Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Prohibitin"
Filter
Filter
Article type
Keywords
Publication year
Authors
Original Article
Endocrine Research
Deficiency of Sphingosine-1-Phosphate Reduces the Expression of Prohibitin and Causes β-Cell Impairment via Mitochondrial Dysregulation
Seok-Woo Hong, Jinmi Lee, Hyemi Kwon, Se Eun Park, Eun-Jung Rhee, Cheol-Young Park, Ki-Won Oh, Sung-Woo Park, Won-Young Lee
Endocrinol Metab. 2018;33(3):403-412.   Published online September 18, 2018
DOI: https://doi.org/10.3803/EnM.2018.33.3.403
  • 4,221 View
  • 50 Download
  • 16 Web of Science
  • 16 Crossref
AbstractAbstract PDFPubReader   ePub   
Background

Emerging evidence suggests that sphingolipids may be involved in type 2 diabetes. However, the exact signaling defect through which disordered sphingolipid metabolism induces β-cell dysfunction remains unknown. The current study demonstrated that sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SphK), is an essential factor for maintaining β-cell function and survival via regulation of mitochondrial action, as mediated by prohibitin (PHB).

Methods

We examined β-cell function and viability, as measured by mitochondrial function, in mouse insulinoma 6 (MIN6) cells in response to manipulation of cellular S1P and PHB levels.

Results

Lack of S1P induced by sphingosine kinase inhibitor (SphKi) treatment caused β-cell dysfunction and apoptosis, with repression of mitochondrial function shown by decreases in cellular adenosine triphosphate content, the oxygen consumption rate, the expression of oxidative phosphorylation complexes, the mitochondrial membrane potential, and the expression of key regulators of mitochondrial dynamics (mitochondrial dynamin-like GTPase [OPA1] and mitofusin 1 [MFN1]). Supplementation of S1P led to the recovery of mitochondrial function and greatly improved β-cell function and viability. Knockdown of SphK2 using small interfering RNA induced mitochondrial dysfunction, decreased glucose-stimulated insulin secretion (GSIS), and reduced the expression of PHB, an essential regulator of mitochondrial metabolism. PHB deficiency significantly reduced GSIS and induced mitochondrial dysfunction, and co-treatment with S1P did not reverse these trends.

Conclusion

Altogether, these data suggest that S1P is an essential factor in the maintenance of β-cell function and survival through its regulation of mitochondrial action and PHB expression.

Citations

Citations to this article as recorded by  
  • Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology
    Petr Ježek, Martin Jabůrek, Blanka Holendová, Hana Engstová, Andrea Dlasková
    Antioxidants & Redox Signaling.2023; 39(10-12): 635.     CrossRef
  • Sphingolipids in mitochondria—from function to disease
    Maryam Jamil, Lauren Ashley Cowart
    Frontiers in Cell and Developmental Biology.2023;[Epub]     CrossRef
  • Sphingosine‐1‐phosphate in mitochondrial function and metabolic diseases
    Meng Duan, Pan Gao, Sheng‐xi Chen, Petr Novák, Kai Yin, Xiao Zhu
    Obesity Reviews.2022;[Epub]     CrossRef
  • Involvement of miR‐27a‐3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress
    Lina Wu, Qingzhu Wang, Feng Guo, Xiaojun Ma, Jiao Wang, Yanyan Zhao, Yushan Yan, Guijun Qin
    Journal of Cellular Physiology.2021; 236(2): 1454.     CrossRef
  • Sphingosine‐1‐phosphate in acute exercise and training
    Katarzyna Hodun, Adrian Chabowski, Marcin Baranowski
    Scandinavian Journal of Medicine & Science in Sports.2021; 31(5): 945.     CrossRef
  • The Ethyl Acetate Extract From Celastrus orbiculatus Promotes Apoptosis of Gastric Cancer Cells Through Mitochondria Regulation by PHB
    Lide Tao, Zixin Yin, Tengyang Ni, Zewen Chu, Shihua Hao, Zeyu Wang, Masataka Sunagawa, Haibo Wang, Yanqing Liu
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K+ Channels in β Cells
    Zhihong Liu, Huanhuan Yang, Linping Zhi, Huan Xue, Zhihong Lu, Yanli Zhao, Lijuan Cui, Tao Liu, Shouan Ren, Peifeng He, Yunfeng Liu, Yi Zhang
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity
    Yadi Tang, Thomas Plötz, Markus H. Gräler, Ewa Gurgul-Convey
    International Journal of Molecular Sciences.2021; 22(19): 10893.     CrossRef
  • Sphingolipids and Mitochondrial Dynamic
    Lais Brigliadori Fugio, Fernanda B. Coeli-Lacchini, Andréia Machado Leopoldino
    Cells.2020; 9(3): 581.     CrossRef
  • Diminished Sphingolipid Metabolism, a Hallmark of Future Type 2 Diabetes Pathogenesis, Is Linked to Pancreatic β Cell Dysfunction
    Saifur R. Khan, Yousef Manialawy, Andreea Obersterescu, Brian J. Cox, Erica P. Gunderson, Michael B. Wheeler
    iScience.2020; 23(10): 101566.     CrossRef
  • Neuronal Metabolism and Neuroprotection: Neuroprotective Effect of Fingolimod on Menadione-Induced Mitochondrial Damage
    Antonio Gil, Elisa Martín-Montañez, Nadia Valverde, Estrella Lara, Federica Boraldi, Silvia Claros, Silvana-Yanina Romero-Zerbo, Oscar Fernández, Jose Pavia, Maria Garcia-Fernandez
    Cells.2020; 10(1): 34.     CrossRef
  • WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction
    Zijian Fang, Susan Pyne, Nigel J. Pyne
    Progress in Lipid Research.2019; : 100991.     CrossRef
  • Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells
    Petr Ježek, Andrea Dlasková
    Mitochondrion.2019; 49: 245.     CrossRef
  • Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells
    I. Pulli, C. Löf, T. Blom, M.Y. Asghar, T. Lassila, N. Bäck, K.-L. Lin, J.H. Nyström, K. Kemppainen, D.M. Toivola, E. Dufour, A. Sanz, H.M. Cooper, J.B. Parys, K. Törnquist
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.2019; 1866(9): 1475.     CrossRef
  • Ceramide and sphingosine 1-phosphate in adipose dysfunction
    Zijian Fang, Susan Pyne, Nigel J. Pyne
    Progress in Lipid Research.2019; 74: 145.     CrossRef
  • S1P/S1P Receptor Signaling in Neuromuscolar Disorders
    Elisabetta Meacci, Mercedes Garcia-Gil
    International Journal of Molecular Sciences.2019; 20(24): 6364.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism