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Taste sensation is the gatekeeper for direct decisions on feeding behavior and evaluating the quality of food. Nutritious and benefi-
cial substances such as sugars and amino acids are represented by sweet and umami tastes, respectively, whereas noxious substances 
and toxins by bitter or sour tastes. Essential electrolytes including Na+ and other ions are recognized by the salty taste. Gustatory in-
formation is initially generated by taste buds in the oral cavity, projected into the central nervous system, and finally processed to 
provide input signals for food recognition, regulation of metabolism and physiology, and higher-order brain functions such as learn-
ing and memory, emotion, and reward. Therefore, understanding the peripheral taste system is fundamental for the development of 
technologies to regulate the endocrine system and improve whole-body metabolism. In this review article, we introduce previous 
widely-accepted views on the physiology and genetics of peripheral taste cells and primary gustatory neurons, and discuss key find-
ings from the past decade that have raised novel questions or solved previously raised questions. 
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INTRODUCTION

Taste is one of the specialized chemical senses that detects ex-
ogenous chemicals, and arises from contact of non-volatile 
chemicals dissolved in the saliva and mucus in the oral cavity 
with taste buds, the primary taste organs. Taste buds are located 
on the fungiform papilla (FuP), foliate papilla (FoP), and cir-
cumvallate papilla (CVP), but not on the filiform papilla, among 
the four types of papillary structures on the surface of the tongue 
(Fig. 1A). In addition, they are abundantly embedded in the soft 
palatal mucosa as well as the pharynx, and to a lesser extent the 
larynx, the epiglottis, and the bronchus. FuP-located taste buds 

are innervated by the chorda tympani nerve, a branch of the fa-
cial nerve, whereas FoP- and CVP-located taste buds are inner-
vated by the glossopharyngeal nerve. The chorda tympani and 
glossopharyngeal nerve, whose neuronal cell bodies are located 
at the geniculate and petrosal ganglion, respectively, project 
their axons to the nucleus solitary tract, relaying taste informa-
tion into the central nervous system (Fig. 1B).

A taste bud is composed of 50 to 100 epithelial cell aggre-
gates arranged into a shape of an onion bulb, and is surrounded 
by lingual keratinocytes, which are morphologically distinct 
(Fig. 1A). Early ultrastructural analyses distinguished intragem-
mal—within any budlike or bulblike body—cells into four 
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types of taste bud cells according to their morphology [1,2]. 
This classification is widely used today as it accurately reflects 
the gene expression patterns and physiological characteristics of 
each type of taste bud cell. Type I cells, the most abundant cell 
type (accounting for half of the total intragemmal cell popula-
tion), have irregular and indented margins and wrap other types 
of cells at the periphery of taste buds. As they are reminiscent of 
glial cells surrounding neurons in the brain, they are referred to 
as “glia-like cells.” Type II cells, which show a spindle shape 
with a large, ovoid nucleus, are known as “receptor cells” due to 
their cellular responses to sweet, umami, or bitter stimuli via G-
protein coupled receptor (GPCR) pathways. Type III cells, 

which accumulate synaptic vesicles toward nearby innervating 
neurons, are referred to as “presynaptic cells.” At the base of 
taste buds, type IV cells arise from perigemmal stem/progenitor 
cells, and differentiate into other types of intragemmal cells.

In this review, we introduce recent advances in understanding 
peripheral taste decoding, including (1) the discovery of non-
canonical chemical synapses in type II cells, (2) the unexpected 
participation of type II cells in sensing appetitive salty taste, (3) 
the molecular mechanism of sour taste and its limitations, and 
(4) the dedicated responses and molecular heterogeneity of pri-
mary gustatory neurons.
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Fig. 1. The peripheral gustatory system in humans and mice. (A) The location of three types of papillae and the structure of the taste buds. 
The fungiform papilla (FuP) are distributed over the anterior two-thirds of the tongue, the foliate papilla are located on the lateral sides of the 
posterior tongue, and the circumvallate papilla (CVP) are mostly located on the center of the posterior one-third of the tongue. Each papilla 
contains one or more taste buds consisting of four types of taste cells: type I supporting (glial-like) cells, type II receptor cells, type III syn-
aptic cells, and type IV basal (progenitor) cells. (B) The gustatory pathway from the taste buds to the brainstem in humans (left) and mice 
(right). Taste buds in the FuP are innervated by the chorda tympani, cranial nerve (CN) VII, and the taste buds in the FuP and CVP are inner-
vated by the glossopharyngeal, cranial nerve IX. Taste impulses carried by CN VII and CN IX synapse in the solitary tract nucleus in the 
medulla oblongata of the brainstem.
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DISCOVERY OF NON-CANONICAL 
CHEMICAL SYNAPSES IN TYPE II CELLS

Type II cells detect either of sweet, umami, or bitter tastants via 
taste receptors, the subfamily of GPCR superfamily [3-6]. Ex-
pression of each type of taste receptor differs in a taste modali-
ty-specific manner. The sweet or umami taste receptor cell 
(TRC) only expresses T1R3, the co-receptor for sweet and 
umami tastes, forming a heterodimer with T1R2 or T1R1, re-
spectively [3,4,6]. In contrast, the single bitter TRC expresses 
multiple bitter taste receptors (T2Rs) among the 25 and 35 T2Rs 
in human and mice, respectively, but T2R seems to function 
alone [7]. Taste receptors initiate intracellular signal transduc-
tion by stimulating gustducin (Ggust). Ggust is a taste-specific 
Gα protein with amino acid sequences similar to Gi [7], which 
simultaneously increases intracellular Ca2+ and decreases cyclic 
adenosine monophosphate (cAMP) [8,9]. Using an early ver-
sion of chemogenetics, a receptor activated solely by a synthetic 
ligand (RASSL), artificial manipulation of sweet and bitter 
TRCs induced attractive and aversive behaviors for spiradoline, 
respectively [6,10]. Thus, one could infer that intracellular 
cAMP reduction leads to activation in type II TRCs. Since most 
excitable cells are hyperpolarized by intracellular cAMP reduc-
tion, this unique characteristic of type II TRCs is remarkable. 
However, the mechanism through which cAMP reduction leads 
to cellular activity remains elusive [8].

In contrast, the role of intracellular Ca2+ signaling has been 
well established. The Gβ3,γ13 complex, which is coupled to 
Ggust, dissociates from it upon taste receptor stimulation [11]. 
The free Gβ3,γ13 complex activates phospholipase Cβ2 
(PLCβ2), hydrolyzing phosphatidylinositol 4,5-bisphosphate 
into inositol trisphosphate (IP3) and diacylglycerol. IP3 opens 
IP3R3 on the endoplasmic reticulum membrane, increasing cy-
tosolic Ca2+ levels [12]. As a Ca2+-activated Na+ channel, tran-
sient receptor potential M5 (TrpM5) induces depolarization 
[13,14], and finally generates action potentials in Type II TRCs 
(Fig. 2A).

There has been a consensus that type II cells function as the 
cellular sensors for tastants, but also a long debate regarding 
how sensory information is transmitted to primary gustatory 
neurons. The absence of intracellular synaptic structures such as 
synaptic vesicles in ultra-high resolution transmission electron 
micrography images [2,15] and synaptic molecules in immuno-
histochemistry [15] had been a strong evidence that type II cells 
transmit the sensory information they generate by releasing syn-
aptic vesicles of type III cells via cell-cell communication sys-

tems such as gap junctions [16]. Nonetheless, this proposal pre-
sented an insufficient explanation for the crosstalk-less trans-
mission of each sensation modality.

Among the several neurotransmitters released from taste buds 
[17,18], adenosine triphosphate (ATP) has been highlighted as 
the genuine neurotransmitter of type II cells because genetic ab-
lation of extracellular purinergic receptor X2 (P2X2) and P2X3 
simultaneously results in depleted nerve responses and behav-
iors to most modalities of taste stimuli [19]. This means that a 
specific neurotransmitter does not transmit each specific modal 
taste, implying the existence of a direct connection between 
taste cells and gustatory neurons. 

The discovery of calcium homeostasis modulator 1/3 (CAL-
HM1/3) has been the master key that solves the questions raised 
above. First, all type II cells express CALHM1/3 [20,21]. Sec-
ond, genetic depletion of CALHM1 impairs nerve responses and 
preference behaviors toward sweet, bitter, and umami tastants. 
Finally, CALHM1/3 directly effluxes ATP upon taste stimula-
tion [20,21]. Therefore, CALHM1/3 provides the mechanism of 
gustatory information transmission without synaptic vesicles, 
refuting the cell-cell communication model and ultimately sug-
gesting a novel type of purinergic synapses without exocytosis 
(Fig. 2B).

RESPONSIBILITY OF TYPE II CELLS IN 
FuP FOR APPETITIVE SALTY TASTE

Usually, a low concentration of Na+ results in an appetitive salty 
taste, whereas a high concentration manifests as an aversive 
salty taste. Although the salt appetite induced by Na+ depletion 
makes this simple classification unclear [22], amiloride serves 
as a solid branching point because it blocks gustatory responses 
to NaCl under 100 mM, but not above 100 mM. Thus, the for-
mer is regarded as amiloride-sensitive salty taste, and the latter 
as amiloride-insensitive [23,24]. As amiloride is an inhibitor of 
epithelial sodium channel (ENAC), ENAC has been believed to 
mediate appetitive salty taste. An ENAC heterotrimeric com-
plex composed of ENACα, β, and γ functions as a selective Na+ 
channel that passively permeates extracellular Na+ in the neph-
rons [25]. In CVP, ENACα is expressed in type III cells [23]. 
Moreover, conditional ablation of Scnn1a, an ENACα-encoding 
gene, in all mature taste cells resulted in diminished nerve re-
sponses and preferences for a low concentration of Na+ in an 
amiloride-dependent manner [23]. Therefore, ENACα has been 
suggested to be required for appetitive salty taste detection (Fig. 
2A).
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However, multiple groups have raised questions about the 
role played by ENAC. The generation of fluorescent tag-insert-
ed knock-in mice for Scnn1β and Scnn1γ revealed that neither is 
co-expressed with ENACα in taste buds, thereby implying that 
appetitive salty taste perception is instead initiated by an un-
known mechanism, not by the heterotrimeric ENAC complex 
[26]. Moreover, an independent electrophysiological approach 
revealed that an amiloride-sensitive current was not recorded in 
ENACα-expressing cells in CVP, but in FuP [27]. Surprisingly, 
the cells expressing ENACα in FuP were positive for CAL-
HM1/3, the novel marker of type II cells. CALHM3 knockout 

(KO) mice lost amiloride-sensitive nerve responses and attrac-
tive behavior for salt, indicating that appetitive salty taste is me-
diated by type II cells and refuting the previous hypothesis of 
engagement of type III cells (Fig. 2B) [27]. However, others re-
ported that CALHM1 KO mice, which had lost an additional 
component for purinergic transmission, had a normal ability to 
sense low concentrations of salt [28]. For the moment, more 
comprehensive evidence is needed to establish the paradigm of 
appetitive salty taste.

Cations other than Na+ are also detected as taste. One of the 
bitter receptors, taste 2 receptor member 7 has been reported to 

Fig. 2. Comparison of past and current understanding of taste transduction in type II and type III taste cells. (A) Past proposed model. Type 
II taste cells transmit sweet, umami, or bitter taste signals to afferent nerve fibers in a type III taste cell-dependent manner, while type III 
taste cells transmit either salt or sour taste signals to afferent nerve fibers. (B) Current proposed model. Type II taste cells, salt cells, and type 
III taste cells individually transmit taste signals of sweet or bitter, salt, and sour tastes, respectively, to the afferent nerve fibers paired with 
each taste cell. Type II taste cells detect sweet, umami, or bitter taste by G-protein coupled receptors (GPCRs) that act in pairs (T1R2+T1R3 
for sweet, and T1R1+T1R3 for umami) or act alone (T2Rs for bitter). GPCR-mediated signal transduction elevates the cytoplasmic Ca2+ 
concentration by releasing Ca2+ from the intracellular stores. Elevation of cytoplasmic Ca2+ in turn activates transient receptor potential cat-
ion channel subfamily m member 5 (TRPM5), depolarizes the cell to generate action potentials through voltage-gated sodium channel 
(VGNC), and releases adenosine triphosphate (ATP) through calcium homeostasis modulator 1/3 (CALHM1/3). Semaphorin 7A 
(SEMA7A) secreted by sweet taste receptor cells (TRCs) and SEMA3A secreted by bitter TRCs guide sweet and bitter ganglion neurons to 
the sweet and the bitter TRCs, respectively. Sodium cells are depolarized by the influx of Na+ through amiloride-sensitive epithelial sodium 
channel alpha subunit (ENACα). Action potentials are generated by an additional Na+ influx through voltage-gated sodium channel 
(VGNA) activation, independently of the intracellular Ca2+ signaling pathway, eventually releasing ATP through CALHM1/3. Type III taste 
cells detect sour taste by H+ influx through Otop1 channels. Intracellular acidification inhibits Kir2.1, and sequentially activates VGNA and 
voltage-gated calcium channel (VGCC), leading to neurotransmitter (NT) release using synaptic vesicles. Gαgust, Gα-gustducin; PDE, 
phosphodiesterase; PLCβ2, phospholipase Cβ2; IP3, inositol trisphosphate; DAG, diacylglycerol; Panx1, pannexin-1; PKD2L1, polycystin 
2 like 1; 5-HT, 5-hydroxytryptamine; GABA, γ-aminobutyric acid; P2X2, P2X purinoceptor 2; P2X3, P2X purinoceptor 3; ER, endoplas-
mic reticulum; Otop1, otopetrin-1; Kir2.1, inward rectifier K+ channel. 
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detect several metal ions, although in vivo evidence is still re-
quired [29,30]. Moreover, tongue slice imaging was presented 
to support that type II cells respond to Cl−, representing 
amiloride-insensitive salty taste, but this possibility requires fur-
ther investigation [31].

SOUR SENSING MECHANISM OF TYPE III 
CELLS

A series of genetic experiments revealed that type III cells are 
required for sensing sour taste [32]. Polycyctic kidney disease 
2-like 1 (PKD2L1), a specific molecular marker of type III 
cells, shows a distinctive expression pattern in double immuno-
histochemistry against type II cell markers [33]. PKD2L1-TeNT 
mice, which express tetanus toxin (TeNT) to silence synaptic 
transmission of type III cells, showed diminished nerve re-
sponses to sour stimuli [34]. Therefore, one might expect that 
type III cells promote aversive behaviors because sour stimuli 
evoke aversive behaviors and activate type III cells. However, it 
is interesting to note that the behavior of PKD2L1-TeNT mice in 
response to sour stimuli had not been reported until recently.

The Oka group recently reported the unexpected results that 
PKD2L1-TeNT mice displayed a normal level of aversive be-
havior against sour stimuli [35]. Rather, optogenetic activation 
of type III cells does not induce aversive, but attractive behav-
iors. Although the attractive behavior induced by optogenetics 
is suspected by other group, it is still agreed that artificial acti-
vation of type III cells does not induce aversion by itself [36]. 
This means that type III cell activity is unnecessary and insuffi-
cient to drive sour-induced aversive behaviors, despite type III 
cellular responses. It has subsequently been shown that trigemi-
nal chemesthesis is additionally required to generate sour-in-
duced aversion [37].

How do type III cells respond to acids? Initially, PKD2L1, the 
well-known marker of type III cells, had received attention as 
an acid sensor (Fig. 2A) [33], but this possibility was quickly 
refuted because PKD2L1 KO mice responded to acidic stimuli 
normally [38]. A recent transcriptomic comparison between 
type II and type III cells indicated that otopetrin 1 (Otop1) is the 
genuine sour sensor [39]. Otop1 gates protons from outside into 
the cytosol, mediates intracellular acidification to close Kir2.1 
[40], and ultimately depolarizes type III cells (Fig. 2B) [41]. Al-
though Otop1 KO mice lack both the electrophysiologic nerve 
responses and the ganglionic Ca2+ responses to sour stimuli, 
they still show normal acid-induced aversive behaviors, con-
firming that the sour taste itself is insufficient to generate aver-

sion [37,41]. 
Type III cells also respond to carbonated water, pure water, 

and high salts [24,35,42]. The detection of both carbonated and 
pure water is an intrinsically identical phenomenon involving 
reduction of the pH of solvents. CO2 from carbonated water is 
dissolved into the solvent by carbonic anhydrase 4 expressed in 
type III cells, generating protons [42]. The ingestion of pure wa-
ter removes bicarbonate from the saliva, transiently reducing 
pH [35]. A further investigation is required to establish the re-
sponses of type III cells to high salts [24].

Taken together, it is currently accepted that type III cells 
mainly respond to stimuli that change the pH or ionic balance of 
the oral cavity, but it is still debated whether the activity of type 
III cells promotes preference or avoidance by itself. This may 
stem from the possible heterogeneity of type III cells, but their 
scarcity has made it hard to unveil the truth. 

DEDICATED RESPONSES OF THE 
GENICULATE GANGLION

Early single-fiber nerve recordings as well as recent in vivo Ca2+ 
imaging techniques have shown the dedicated responses of pri-
mary gustatory neurons to each taste modality [43-45], which 
implies the existence of selective connections between taste-re-
sponsive cells in taste buds and primary gustatory neurons. 
Therefore, taste-responsive cells for each modality require mo-
lecular machinery for exclusive synapses to the corresponding 
neurons. 

Recently, the Zuker group demonstrated that several sema-
phorins (SEMAs), as a subcategory of cell adhesion molecules, 
are responsible for the precise innervation of gustatory neurons 
into taste buds in a modality-specific manner (Fig. 2B) [46]. 
SEMA expression differs depending on cellular modality type, 
with SEMA7A found in sweet taste cells and SEMA3A in bitter 
taste cells. Genetic depletion of each SEMA disrupts both taste-
guided behaviors and the modality-specific responses of the 
ganglion. Moreover, ectopic expression of human SEMA7A in 
sour cells transmitted sour signals into a sweet-dedicated gan-
glion, confirming the role of the SEMA system in wiring epithe-
lial cells to neurons. Given that SEMAs are secreted from taste 
bud cells, specific binding partners should be expressed in each 
type of neuron. These findings imply that primary gustatory 
neurons show considerable molecular heterogeneity.

Single-cell RNA sequencing (scRNAseq) enabled classifica-
tion of entire population of neurons of the geniculate ganglion 
based on transcriptomic profiles [37,47]. Gustatory neurons are 
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not only molecularly isolated from the somatosensory compo-
nents of the auriculotemporal nerve [47], but are also divided 
into five classes corresponding to each taste modality [37]. In-
deed, the Zuker group identified specific markers for each 
group: Spondin1 for sweet; Cdh4 for umami; Cdh13 for bitter; 
Penk for sour; and Egr2 for salty taste. They created KO mice 
and transgenic mice carrying Cre for each marker, observing 
behavioral defects and selective responses of the labeled gan-
glia, respectively [37]. Therefore, it was confirmed that the relay 
of information for each taste modality is genetically defined at 
the entrance of the neural network.

HORMONAL EFFECTS ON TASTE 
PERCEPTION

Hormones are usually defined as chemical signals secreted into 
the bloodstream which act on distant tissues for their specific 
regulation. In addition to the primary ‘endocrine’ organs, taste 
buds also had been reported to express metabolic hormones such 
as vasoactive intestinal peptide and serotonin [48,49]. In the ear-
ly 21st century, more evidence had accumulated that taste cells 
express several metabolic hormones and their relevant receptors. 
Accordingly, the concept has emerged that hormones can act on 
taste cells and, as a result, can affect taste perception in autocrine 
and/or paracrine manner. Several types of metabolic hormones 
expressed in taste cells had been studied, including neuropeptide 
Y (NPY) and cholecystokinin (CCK) [50,51]. Similar to the dia-
metrical roles of anorexigenic CCK and orexigenic NPY in ener-
gy metabolism [52], they also have opposite effects on potassium 
current in taste cells [53]. Resulting amplification of bitter taste 
perception against sweet taste perception are assumed not to pass 
over bitter-tasting toxins, which can be an example of regulation 
of taste decoding in a coordinated manner.

In the past decade, more hormones and/or their receptors have 
been discovered in taste cells, and their roles in taste decoding 
by modulating intracellular signaling have been delineated. 
Glucagon enhances sweet taste, which is similar to glucagon-
like peptide-1, another cleavage product generated from a pro-
glucagon peptide [54,55]. Ghrelin reduces salty and sour taste 
responsivity [56]. Angiotensin inhibits salty taste and enhances 
sweet taste sensitivities [57] while leptin selectively suppresses 
neural and behavioral responses to sweet taste [58]. Various re-
search groups have tried to define the expression patterns and 
roles in taste perception of the hormones, which are well de-
scribed in other review articles [59,60]. 

Conversely, regulation of synthesis and secretion of hormones 

from taste buds has been unclear yet. Considering that nutrients 
and energy status regulate synthesis and secretion of metabolic 
hormones in major endocrine organs, it is plausible that each 
tastant also might facilitate hormonal expression and/or secre-
tion in taste cells. Furthermore, the taste buds derived-hormones 
might affect systemic metabolism. Cephalic phases insulin re-
sponses might be the good example to support to this [61,62]. 
However, the extent of taste bud derived-hormones affecting at 
systemic levels should be re-examined. Taste buds are too tiny 
and limited in their number to study with conventional bio-
chemical research methods, thus novel tools including organ-
oids would serve as the alternatives in this field.

CONCLUSIONS

Although the discovery of CALHM1/3, Scnn1a, Otop1, and 
SEMA broadened the current understanding of peripheral taste 
decoding, several questions still remain. Are there any unidenti-
fied taste modalities like fat and starch? How many types of in-
tragemmal cells can be classified according to the transcriptom-
ic profile? What is the molecular mechanism of the differentia-
tion of taste cells that respond to specific taste modalities? What 
is the effect of each taste stimulus on regulating the expression 
of each hormone in taste cells? Do knowledges of taste decod-
ing obtained from animal experiments have human relevance? 
High-throughput scRNAseq for taste buds would be expected to 
resolve transcriptomic heterogeneity issues, illuminating unex-
pected and novel molecular pathways, and eventually helping to 
regulate feeding behaviors and metabolism in humans. 
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