Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > BROWSE ARTICLES > Previous issues
26 Previous issues
Filter
Filter
Article type
Keywords
Authors
Volume 31(1); March 2016
Prev issue Next issue
Namgok Lecture 2015
Obesity and Metabolism
The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis
Kyung Mook Choi
Endocrinol Metab. 2016;31(1):1-6.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.1
  • 5,899 View
  • 70 Download
  • 45 Web of Science
  • 45 Crossref
AbstractAbstract PDFPubReader   

Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.

Citations

Citations to this article as recorded by  
  • Cardiometabolic diseases and early cognitive decline: Mitigated by integrated active lifestyle for brain health
    Haowei Li, Shige Qi, Shengshu Wang, Shanshan Yang, Shaohua Liu, Shimin Chen, Xuehang Li, Rongrong Li, Junhan Yang, Huaihao Li, Yinghui Bao, Yueting Shi, Zhihui Wang, Miao Liu, Yao He
    Journal of Affective Disorders.2024; 350: 155.     CrossRef
  • Current status and future perspectives of FGF21 analogues in clinical trials
    Zara Siu Wa Chui, Qing Shen, Aimin Xu
    Trends in Endocrinology & Metabolism.2024; 35(5): 371.     CrossRef
  • Organokinler ve Biyokimyasal Etkileri
    Ahmet İlhan, Umut Kökbaş
    Arşiv Kaynak Tarama Dergisi.2024; 33(1): 71.     CrossRef
  • The Significance of Selected Myokines in Predicting the Length of Rehabilitation of Patients after COVID-19 Infection
    Alicja Mińko, Agnieszka Turoń-Skrzypińska, Aleksandra Rył, Katarzyna Mańkowska, Aneta Cymbaluk-Płoska, Iwona Rotter
    Biomedicines.2024; 12(4): 836.     CrossRef
  • Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation
    Xiaolei Miao, Arian Alidadipour, Vian Saed, Firooze Sayyadi, Yasaman Jadidi, Maryam Davoudi, Fatemeh Amraee, Nastaran Jadidi, Reza Afrisham
    Acta Diabetologica.2024; 61(11): 1339.     CrossRef
  • Effects of stopped and reduced training on irisin and metabolic parameters in professional female basketball players
    Azam Heidari, Akram Jafari
    German Journal of Exercise and Sport Research.2024;[Epub]     CrossRef
  • РОЛЬ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ В РАЗВИТИИ КАРДИОВАСКУЛЯРНЫХ ОСЛОЖНЕНИЙ ПРИ АБДОМИНАЛЬНОМ ОЖИРЕНИИ У ДЕТЕЙ (литературный обзор)
    Эльнара Ибрагимова , Лиля Гарифулина
    Международный журнал научной педиатрии.2024; 3(8): 710.     CrossRef
  • Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk
    Jose Marcos Sanches, Li Na Zhao, Albert Salehi, Claes B. Wollheim, Philipp Kaldis
    The FEBS Journal.2023; 290(3): 620.     CrossRef
  • Research Progress on the Mechanism of Obesity-Induced Cardiovascular Disease
    文清 刘
    Advances in Clinical Medicine.2023; 13(08): 12887.     CrossRef
  • The Pan-liver Network Theory
    Yaxing Zhang, Xian-Ming Fang
    Chinese Journal of Physiology.2023; 66(6): 401.     CrossRef
  • Higher serum level of CTRP15 in patients with coronary artery disease is associated with disease severity, body mass index and insulin resistance
    Abolfazl Shokoohi Nahrkhalaji, Reza Ahmadi, Reza Fadaei, Ghodratollah Panahi, Malihe Razzaghi, Soudabeh Fallah
    Archives of Physiology and Biochemistry.2022; 128(1): 276.     CrossRef
  • Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future
    João Paulo Margiotti dos Santos, Mariana Canevari de Maio, Monike Alves Lemes, Lucas Fornari Laurindo, Jesselina Francisco dos Santos Haber, Marcelo Dib Bechara, Pedro Sidnei do Prado, Eduardo Costa Rauen, Fernando Costa, Barbara Cristina de Abreu Pereira
    International Journal of Molecular Sciences.2022; 23(1): 498.     CrossRef
  • Hepatic PTEN Signaling Regulates Systemic Metabolic Homeostasis through Hepatokines-Mediated Liver-to-Peripheral Organs Crosstalk
    Flavien Berthou, Cyril Sobolewski, Daniel Abegg, Margot Fournier, Christine Maeder, Dobrochna Dolicka, Marta Correia de Sousa, Alexander Adibekian, Michelangelo Foti
    International Journal of Molecular Sciences.2022; 23(7): 3959.     CrossRef
  • Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome in Women: Effects of Lifestyle Modifications
    Maria Teresa Guagnano, Damiano D'Ardes, Rossi Ilaria, Francesca Santilli, Cosima Schiavone, Marco Bucci, Francesco Cipollone
    Journal of Clinical Medicine.2022; 11(10): 2759.     CrossRef
  • Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma
    Meenakshi Vachher, Savita Bansal, Bhupender Kumar, Sandeep Yadav, Taruna Arora, Nalini Moza Wali, Archana Burman
    Journal of Cellular Biochemistry.2022; 123(10): 1553.     CrossRef
  • Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise
    Giulia Minniti, Letícia Maria Pescinini-Salzedas, Guilherme Almeida dos Santos Minniti, Lucas Fornari Laurindo, Sandra Maria Barbalho, Renata Vargas Sinatora, Lance Alan Sloan, Rafael Santos de Argollo Haber, Adriano Cressoni Araújo, Karina Quesada, Jesse
    International Journal of Molecular Sciences.2022; 23(21): 13452.     CrossRef
  • CURRENT CONCEPTS ON LEPTIN-MEDIATED REGULATION OF METABOLISM
    R. B. Aliiev
    Bulletin of Problems Biology and Medicine.2022; 1(4): 9-1.     CrossRef
  • Inflammatory biomarkers and prediction of insulin resistance in Congolese adults
    Reine Freudlendrich Eboka-Loumingou Sakou, Benjamin Longo-Mbenza, Mûnka Nkalla-Lambi, Etienne Mokondjimobe, Henry Germain Monabeka, Donatien Moukassa, Ange Antoine Abena, Mia Pamela Mekieje Tumchou, Venant Tchokonte-Nana
    Heliyon.2021; 7(2): e06139.     CrossRef
  • Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions
    Ana Rita de Oliveira dos Santos, Bárbara de Oliveira Zanuso, Vitor Fernando Bordin Miola, Sandra Maria Barbalho, Patrícia C. Santos Bueno, Uri Adrian Prync Flato, Claudia Rucco P. Detregiachi, Daniela Vieira Buchaim, Rogério Leone Buchaim, Ricardo José To
    International Journal of Molecular Sciences.2021; 22(5): 2639.     CrossRef
  • The Effects of Two Different Intensities of Combined Training on C1q/TNF-Related Protein 3 (CTRP3) and Insulin Resistance in Women with Non-alcoholic Fatty Liver Disease
    Somayeh Rajabi, Roya Askari, Amir Hossein Haghighi, Nasrin Razavianzadeh
    Hepatitis Monthly.2021;[Epub]     CrossRef
  • Handgrip and sex-specific cardiometabolic risk factors in Hispanic/Latino migrant farmworkers
    Anas Raed, Jessica Bilz, Miriam Cortez-Cooper, Lufei Young, Li Chen, Pamela Cromer, Haidong Zhu, Andrew Mazzoli, Samip Parikh, Jigar Bhagatwala, Yutong Dong, Zhuo Sun, Debbie Layman, Yanbin Dong
    Scientific Reports.2021;[Epub]     CrossRef
  • Crossing the Antarctica: Exploring the Effects of Appetite-Regulating Hormones and Indicators of Nutrition Status during a 93-Day Solo-Expedition
    Bjørn Helge Johnsen, Guttorm Brattebø, Terry M. Phillips, Rune Gjeldnes, Paul T. Bartone, Hans-Olav Neteland Monsen, Julian F. Thayer
    Nutrients.2021; 13(6): 1777.     CrossRef
  • Irisin in atherosclerosis
    Zhe-Bin Cheng, Liang Huang, Xuan Xiao, Jia-Xiang Sun, Zi-Kai Zou, Jie-Feng Jiang, Cong Lu, Hai-Ya Zhang, Chi Zhang
    Clinica Chimica Acta.2021; 522: 158.     CrossRef
  • Pilates and TRX training methods can improve insulin resistance in overweight women by increasing an exercise-hormone, Irisin
    Marzyeh Rahimi, Parvaneh Nazarali, Rostam Alizadeh
    Journal of Diabetes & Metabolic Disorders.2021; 20(2): 1455.     CrossRef
  • Effects of GLP-1 receptor agonists on myokine levels and pro-inflammatory cytokines in patients with type 2 diabetes mellitus
    Valentina Guarnotta, Maria J. Bianco, Enrica Vigneri, Felicia Panto’, Bruna Lo Sasso, Marcello Ciaccio, Giuseppe Pizzolanti, Carla Giordano
    Nutrition, Metabolism and Cardiovascular Diseases.2021; 31(11): 3193.     CrossRef
  • Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism
    Tae Hyun Kim, Dong-Gyun Hong, Yoon Mee Yang
    Biomedicines.2021; 9(12): 1903.     CrossRef
  • Higher circulating levels of ANGPTL8 are associated with body mass index, triglycerides, and endothelial dysfunction in patients with coronary artery disease
    Reza Fadaei, Hossein Shateri, Johanna K. DiStefano, Nariman Moradi, Mohammad Mohammadi, Farzad Emami, Hassan Aghajani, Nasrin Ziamajidi
    Molecular and Cellular Biochemistry.2020; 469(1-2): 29.     CrossRef
  • Nonalcoholic fatty liver disease and cardiovascular disease phenotypes
    Giandomenico Bisaccia, Fabrizio Ricci, Cesare Mantini, Claudio Tana, Gian Luca Romani, Cosima Schiavone, Sabina Gallina
    SAGE Open Medicine.2020;[Epub]     CrossRef
  • Dysregulated Autophagy Mediates Sarcopenic Obesity and Its Complications via AMPK and PGC1α Signaling Pathways: Potential Involvement of Gut Dysbiosis as a Pathological Link
    Ji Yeon Ryu, Hyung Muk Choi, Hyung-In Yang, Kyoung Soo Kim
    International Journal of Molecular Sciences.2020; 21(18): 6887.     CrossRef
  • Fetuin-A as a Potential Biomarker of Metabolic Variability Following 60 Days of Bed Rest
    Kiera Ward, Edwin Mulder, Petra Frings-Meuthen, Donal J. O’Gorman, Diane Cooper
    Frontiers in Physiology.2020;[Epub]     CrossRef
  • Effect of Moderate Aerobic Exercise on Serum Levels of FGF21 and Fetuin A in Women with Type 2 Diabetes
    Exir Vizvari, Parvin farzanegi, Hajar Abbas Zade
    Medical Laboratory Journal.2020; 14(6): 17.     CrossRef
  • The implication of hepatokines in metabolic syndrome
    Maryam Esfahani, Mostafa Baranchi, Mohammad Taghi Goodarzi
    Diabetes & Metabolic Syndrome: Clinical Research & Reviews.2019; 13(4): 2477.     CrossRef
  • The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox
    Irene Karampela, Gerasimos Socrates Christodoulatos, Maria Dalamaga
    Current Obesity Reports.2019; 8(4): 434.     CrossRef
  • Sarcopenia and myokines profile as risk factors in cardiovascular diseases?
    Mariusz Ciołkiewicz, Anna Kuryliszyn-Moskal, Anna Hryniewicz, Karol Kamiński
    Postępy Higieny i Medycyny Doświadczalnej.2019; 73: 550.     CrossRef
  • Pathophysiological Implication of Fetuin-A Glycoprotein in the Development of Metabolic Disorders: A Concise Review
    Lynda Bourebaba, Krzysztof Marycz
    Journal of Clinical Medicine.2019; 8(12): 2033.     CrossRef
  • Loss of Glycine N-Methyltransferase Associates with Angiopoietin-Like Protein 8 Expression in High Fat-Diet-Fed Mice
    Jian-Wei Huang, Chao-Ju Chen, Chia-Hung Yen, Yi-Ming Arthur Chen, Yu-Peng Liu
    International Journal of Molecular Sciences.2019; 20(17): 4223.     CrossRef
  • Recent advances in biosensor technology in assessment of early diabetes biomarkers
    Armin Salek-Maghsoudi, Faezeh Vakhshiteh, Raheleh Torabi, Shokoufeh Hassani, Mohammad Reza Ganjali, Parviz Norouzi, Morteza Hosseini, Mohammad Abdollahi
    Biosensors and Bioelectronics.2018; 99: 122.     CrossRef
  • Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: a positron emission tomography study
    Miikka-Juhani Honka, Aino Latva-Rasku, Marco Bucci, Kirsi A Virtanen, Jarna C Hannukainen, Kari K Kalliokoski, Pirjo Nuutila
    European Journal of Endocrinology.2018; 178(5): 523.     CrossRef
  • Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva
    Esther Sánchez-Tirado, Araceli González-Cortés, Paloma Yáñez-Sedeño, José M. Pingarrón
    Biosensors and Bioelectronics.2018; 113: 88.     CrossRef
  • Decreased muscle mass in Korean subjects with intracranial arterial stenosis: The Kangbuk Samsung Health Study
    Ho-Jung Jung, Hwanseok Jung, Taeyoung Lee, Jongho Kim, Jongsin Park, Hacsoo Kim, Junghwan Cho, Won-Young Lee, Sung-Woo Park, Eun-Jung Rhee, Hyung-Geun Oh
    Atherosclerosis.2017; 256: 89.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES
    Jang Won Son, Seong Su Lee, Sung Rae Kim, Soon Jib Yoo, Bong Yun Cha, Ho Young Son, Nam H. Cho
    Diabetologia.2017; 60(5): 865.     CrossRef
  • Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells
    Hye-Jin Jung, Seung-Soon Im, Dae-Kyu Song, Jae-Hoon Bae
    BMB Reports.2017; 50(6): 323.     CrossRef
  • Irisin: A Potential Link between Physical Exercise and Metabolism—An Observational Study in Differently Trained Subjects, from Elite Athletes to Sedentary People
    Stefano Benedini, Elena Dozio, Pietro Luigi Invernizzi, Elena Vianello, Giuseppe Banfi, Ileana Terruzzi, Livio Luzi, Massimiliano Marco Corsi Romanelli
    Journal of Diabetes Research.2017; 2017: 1.     CrossRef
  • Serum Vaspin Concentration in Elderly Type 2 Diabetes Mellitus Patients with Differing Body Mass Index: A Cross-Sectional Study
    Wei Yang, Yun Li, Tian Tian, Li Wang
    BioMed Research International.2017; 2017: 1.     CrossRef
Close layer
Review Articles
Obesity and Metabolism
Understanding Metabolomics in Biomedical Research
Su Jung Kim, Su Hee Kim, Ji Hyun Kim, Shin Hwang, Hyun Ju Yoo
Endocrinol Metab. 2016;31(1):7-16.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.7
  • 8,492 View
  • 152 Download
  • 52 Web of Science
  • 51 Crossref
AbstractAbstract PDFPubReader   

The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced.

Citations

Citations to this article as recorded by  
  • Metabolomics and Risk of Dementia: A Systematic Review of Prospective Studies
    Ashley C Flores, Xinyuan Zhang, Penny M Kris-Etherton, Martin J Sliwinski, Greg C Shearer, Xiang Gao, Muzi Na
    The Journal of Nutrition.2024; 154(3): 826.     CrossRef
  • Optimization and validation of metabolomics methods for feline urine and serum towards application in veterinary medicine
    Ellen Vanden Broecke, Laurens Van Mulders, Ellen De Paepe, Sylvie Daminet, Lynn Vanhaecke
    Analytica Chimica Acta.2024; 1310: 342694.     CrossRef
  • Heavy metal exposure and metabolomics analysis: an emerging frontier in environmental health
    Kainat Ilyas, Hajra Iqbal, Muhammad Sajid Hamid Akash, Kanwal Rehman, Amjad Hussain
    Environmental Science and Pollution Research.2024; 31(26): 37963.     CrossRef
  • A ternary correlation multi‐symptom network strategy based on in vivo chemical profile identification and metabolomics to explore the molecular basis of Ephedra herb against viral pneumonia
    Xiaoyan Wang, Jie Mei, Fan Zhang, Miaomiao Wei, Yujun Xie, Alamusi Bayoude, Xiufeng Liu, Boli Zhang, Boyang Yu
    Journal of Separation Science.2024;[Epub]     CrossRef
  • Exploring microbiota-gut-brain axis biomarkers linked to autism spectrum disorder in prenatally chlorpyrifos-exposed Fmr1 knock-out and wild-type male rats
    Ana M. Salmerón, Cristian Pérez-Fernández, Ana C. Abreu, Silvia Fernández, Ana I. Tristán, Diego Ruiz-Sobremazas, María Cabré, Laia Guardia-Escote, Ignacio Fernández, Fernando Sánchez-Santed
    Toxicology.2024; 506: 153871.     CrossRef
  • Metabolomics for dental caries diagnosis: Past, present, and future
    Paras Ahmad, Dina G. Moussa, Walter L. Siqueira
    Mass Spectrometry Reviews.2024;[Epub]     CrossRef
  • Ambient Ozone Exposure, Semen Plasma Metabolites, and Sperm Quality Decline among Adult Men in Wuhan China
    Yangchang Zhang, Shi Zhao, Wangnan Cao, Shengzhi Sun, Qiang Zeng, Peng Luo
    Environment & Health.2024; 2(10): 729.     CrossRef
  • Overcoming donor variability and risks associated with fecal microbiota transplants through bacteriophage-mediated treatments
    Torben Sølbeck Rasmussen, Xiaotian Mao, Sarah Forster, Sabina Birgitte Larsen, Alexandra Von Münchow, Kaare Dyekær Tranæs, Anders Brunse, Frej Larsen, Josue Leonardo Castro Mejia, Signe Adamberg, Axel Kornerup Hansen, Kaarel Adamberg, Camilla Hartmann Fri
    Microbiome.2024;[Epub]     CrossRef
  • Genome-wide association study of maternal plasma metabolites during pregnancy
    Siyang Liu, Jilong Yao, Liang Lin, Xianmei Lan, Linlin Wu, Xuelian He, Nannan Kong, Yan Li, Yuqing Deng, Jiansheng Xie, Huanhuan Zhu, Xiaoxia Wu, Zilong Li, Likuan Xiong, Yuan Wang, Jinghui Ren, Xuemei Qiu, Weihua Zhao, Ya Gao, Yuanqing Chen, Fengxia Su,
    Cell Genomics.2024; 4(10): 100657.     CrossRef
  • Circulating medium‐ and long‐chain acylcarnitines are associated with plasma P‐tau181 in cognitively normal older adults
    Tahmida Sharmin, Pratishtha Chatterjee, James D. Doecke, Nicholas J. Ashton, Kevin Huynh, Steve Pedrini, Hamid R. Sohrabi, Benjamin Heng, Shaun Eslick, Henrik Zetterberg, Kaj Blennow, Manohar Garg, Ralph N. Martins
    Journal of Neurochemistry.2024;[Epub]     CrossRef
  • Associations of PFAS-related plasma metabolites with cholesterol and triglyceride concentrations
    T. Schillemans, I.A. Bergdahl, K. Hanhineva, L. Shi, C. Donat-Vargas, J. Koponen, H. Kiviranta, R. Landberg, A. Åkesson, C. Brunius
    Environmental Research.2023; 216: 114570.     CrossRef
  • UPLC-Q-Exactive-based rats serum metabolomics for characterization of traditional Chinese medicine Natures and Flavors
    Hong Wang, Ruofang Gao, Jing Liu, Shuang Zhang, Yunli Zhao, Zhiguo Yu
    Journal of Ethnopharmacology.2023; 302: 115931.     CrossRef
  • Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models
    Meritxell Deulofeu, Eladia M. Peña-Méndez, Petr Vaňhara, Josef Havel, Lukáš Moráň, Lukáš Pečinka, Anna Bagó-Mas, Enrique Verdú, Victoria Salvadó, Pere Boadas-Vaello
    ACS Chemical Neuroscience.2023; 14(2): 300.     CrossRef
  • Metabolic signature of HepaRG cells exposed to ethanol and tumor necrosis factor alpha to study alcoholic steatohepatitis by LC–MS-based untargeted metabolomics
    Elias Iturrospe, Rani Robeyns, Katyeny Manuela da Silva, Maria van de Lavoir, Joost Boeckmans, Tamara Vanhaecke, Alexander L. N. van Nuijs, Adrian Covaci
    Archives of Toxicology.2023; 97(5): 1335.     CrossRef
  • Integrating metabolomics and network pharmacology to assess the effects of quercetin on lung inflammatory injury induced by human respiratory syncytial virus
    Ya-Lei Sun, Pei-Pei Zhao, Cheng-Bi Zhu, Ming-Chen Jiang, Xin-Min Li, Jia-Lei Tao, Chan-Chan Hu, Bin Yuan
    Scientific Reports.2023;[Epub]     CrossRef
  • Comparison of Plasma Metabolites From Patients With Non-Small Cell Lung Cancer by Erlotinib Treatment and Skin Rash
    Won Kil Lee, Jisoo Myong, Eunbin Kwag, Younmin Shin, Ji Woong Son, Byong Chul Yoo, Byoung-Soo Kim, Hwa-Seung Yoo, Jeong June Choi
    Integrative Cancer Therapies.2023;[Epub]     CrossRef
  • Metabolomic Signatures of Exposure to Nitrate and Trihalomethanes in Drinking Water and Colorectal Cancer Risk in a Spanish Multicentric Study (MCC-Spain)
    Jose A. Alcolea, Carolina Donat-Vargas, Anastasia Chrysovalantou Chatziioannou, Pekka Keski-Rahkonen, Nivonirina Robinot, Antonio José Molina, Pilar Amiano, Inés Gómez-Acebo, Gemma Castaño-Vinyals, Lea Maitre, Marc Chadeau-Hyam, Sonia Dagnino, Sibo Lucas
    Environmental Science & Technology.2023; 57(48): 19316.     CrossRef
  • Urine metabolomic biomarkers for prediction of isolated fetal congenital heart defect
    Perry Friedman, Ali Yilmaz, Zafer Ugur, Faryal Jafar, Amy Whitten, Ilyas Ustun, Onur Turkoglu, Stewart Graham, Ray Bahado Singh
    The Journal of Maternal-Fetal & Neonatal Medicine.2022; 35(25): 6380.     CrossRef
  • Metabolic Signature of Ethanol-Induced Hepatotoxicity in HepaRG Cells by Liquid Chromatography–Mass Spectrometry-Based Untargeted Metabolomics
    Elias Iturrospe, Katyeny Manuela da Silva, Rani Robeyns, Maria van de Lavoir, Joost Boeckmans, Tamara Vanhaecke, Alexander L.N. van Nuijs, Adrian Covaci
    Journal of Proteome Research.2022; 21(4): 1153.     CrossRef
  • Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era
    Dina G. Moussa, Paras Ahmad, Tamer A. Mansour, Walter L. Siqueira
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Current Knowledge in Skin Metabolomics: Updates from Literature Review
    Alessia Paganelli, Valeria Righi, Elisabetta Tarentini, Cristina Magnoni
    International Journal of Molecular Sciences.2022; 23(15): 8776.     CrossRef
  • Metabolome-wide association study of the relationship between chlorpyrifos exposure and first trimester serum metabolite levels in pregnant Thai farmworkers
    Donghai Liang, Jonathan Batross, Nancy Fiedler, Tippawan Prapamontol, Panrapee Suttiwan, Parinya Panuwet, Warangkana Naksen, Brittney O. Baumert, Volha Yakimavets, Youran Tan, Priya D'Souza, Ampica Mangklabruks, Supattra Sittiwang, Kristsanachai Kaewthit,
    Environmental Research.2022; 215: 114319.     CrossRef
  • Differential Plasma Metabolites between High- and Low-Grade Meningioma Cases
    Gabriel A. Kurokawa, Pedro T. Hamamoto Filho, Jeany Delafiori, Aline F. Galvani, Arthur N. de Oliveira, Flávia L. Dias-Audibert, Rodrigo R. Catharino, Maria Inês M. C. Pardini, Marco A. Zanini, Estela de O. Lima, Adriana C. Ferrasi
    International Journal of Molecular Sciences.2022; 24(1): 394.     CrossRef
  • Plasma metabolites associated with exposure to perfluoroalkyl substances and risk of type 2 diabetes – A nested case-control study
    Tessa Schillemans, Lin Shi, Carolina Donat-Vargas, Kati Hanhineva, Andreas Tornevi, Ingegerd Johansson, Jani Koponen, Hannu Kiviranta, Olov Rolandsson, Ingvar A. Bergdahl, Rikard Landberg, Agneta Åkesson, Carl Brunius
    Environment International.2021; 146: 106180.     CrossRef
  • Methionine transsulfuration pathway is upregulated in long-lived humans
    Natàlia Mota-Martorell, Mariona Jové, Consuelo Borrás, Rebeca Berdún, Èlia Obis, Joaquim Sol, Rosanna Cabré, Irene Pradas, José Daniel Galo-Licona, Josep Puig, José Viña, Reinald Pamplona
    Free Radical Biology and Medicine.2021; 162: 38.     CrossRef
  • Investigating metabolism by mass spectrometry: From steady state to dynamic view
    Matteo Audano, Silvia Pedretti, Simona Ligorio, Flavio Giavarini, Donatella Caruso, Nico Mitro
    Journal of Mass Spectrometry.2021;[Epub]     CrossRef
  • The Efficacy of Pilates on Urinary Incontinence in Korean Women: A Metabolomics Approach
    Gyumin Kang, Haelim Lee, Malsoon Shin, Jaekwan Kim, Sungki Lee, Youngja Park
    Metabolites.2021; 11(2): 118.     CrossRef
  • Broad Metabolome Alterations Associated with the Intake of Oral Contraceptives Are Mediated by Cortisol in Premenopausal Women
    Clara Eick, Johanna Klinger-König, Stephanie Zylla, Anke Hannemann, Kathrin Budde, Ann Kristin Henning, Maik Pietzner, Matthias Nauck, Henry Völzke, Hans J. Grabe, Johannes Hertel
    Metabolites.2021; 11(4): 193.     CrossRef
  • Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review
    Talha Rafiq, Sandi M Azab, Koon K Teo, Lehana Thabane, Sonia S Anand, Katherine M Morrison, Russell J de Souza, Philip Britz-McKibbin
    Advances in Nutrition.2021; 12(6): 2333.     CrossRef
  • MSCAT: A Machine Learning Assisted Catalog of Metabolomics Software Tools
    Jonathan Dekermanjian, Wladimir Labeikovsky, Debashis Ghosh, Katerina Kechris
    Metabolites.2021; 11(10): 678.     CrossRef
  • Defining NASH from a Multi-Omics Systems Biology Perspective
    Lili Niu, Karolina Sulek, Catherine G. Vasilopoulou, Alberto Santos, Nicolai J. Wewer Albrechtsen, Simon Rasmussen, Florian Meier, Matthias Mann
    Journal of Clinical Medicine.2021; 10(20): 4673.     CrossRef
  • Defining Blood Plasma and Serum Metabolome by GC-MS
    Olga Kiseleva, Ilya Kurbatov, Ekaterina Ilgisonis, Ekaterina Poverennaya
    Metabolites.2021; 12(1): 15.     CrossRef
  • Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response
    Javier Perez-Garcia, Esther Herrera-Luis, Fabian Lorenzo-Diaz, Mario González, Olaia Sardón, Jesús Villar, Maria Pino-Yanes
    International Journal of Molecular Sciences.2020; 21(8): 2908.     CrossRef
  • Metabolomic characterization of semen from asthenozoospermic patients using ultra‐high‐performance liquid chromatography–tandem quadrupole time‐of‐flight mass spectrometry
    Li Li, Xinrui Hao, Hua Chen, Liyuan Wang, Aolei Chen, Xiaotian Song, Zhiyan Hu, Ying Su, Han Lin, Pei Fan
    Biomedical Chromatography.2020;[Epub]     CrossRef
  • Comparison of Metabolomic Profiles of Organs in Mice of Different Strains Based on SPME-LC-HRMS
    Katarzyna Burlikowska, Iga Stryjak, Joanna Bogusiewicz, Bogumiła Kupcewicz, Karol Jaroch, Barbara Bojko
    Metabolites.2020; 10(6): 255.     CrossRef
  • Metabolomics and Machine Learning Approaches Combined in Pursuit for More Accurate Paracoccidioidomycosis Diagnoses
    Estela de Oliveira Lima, Luiz Claudio Navarro, Karen Noda Morishita, Camila Mika Kamikawa, Rafael Gustavo Martins Rodrigues, Mohamed Ziad Dabaja, Diogo Noin de Oliveira, Jeany Delafiori, Flávia Luísa Dias-Audibert, Marta da Silva Ribeiro, Adriana Pardini
    mSystems.2020;[Epub]     CrossRef
  • Metabolomics in the study of spontaneous animal diseases
    Helena Tran, Malcolm McConville, Panayiotis Loukopoulos
    Journal of Veterinary Diagnostic Investigation.2020; 32(5): 635.     CrossRef
  • Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism
    Hoon Kim, Jung Eun Lee, Hyun Ju Yoo, Jae Hoon Sung, Seung Ho Yang
    Journal of Korean Neurosurgical Society.2020; 63(6): 689.     CrossRef
  • Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics
    Israa T Ismail, Megan R Showalter, Oliver Fiehn
    Metabolites.2019; 9(10): 242.     CrossRef
  • Metabolomic profiles of induced pluripotent stem cells derived from patients with rheumatoid arthritis and osteoarthritis
    Juryun Kim, Sunyoung Christina Kang, Na Eun Yoon, Yena Kim, Jinhyeok Choi, Narae Park, Hyerin Jung, Byung Hwa Jung, Ji Hyeon Ju
    Stem Cell Research & Therapy.2019;[Epub]     CrossRef
  • Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature
    Gaurav V. Sarode, Kyoungmi Kim, Dorothy A. Kieffer, Noreene M. Shibata, Tomas Litwin, Anna Czlonkowska, Valentina Medici
    Metabolomics.2019;[Epub]     CrossRef
  • Metabolomics study of the therapeutic mechanism of a Chinese herbal formula on collagen-induced arthritis mice
    Zhen Jin, Ji-da Zhang, Xin Wu, Gang Cao
    RSC Advances.2019; 9(7): 3716.     CrossRef
  • Plasma sphingomyelins increase in pre-diabetic Korean men with abdominal obesity
    Seung-Soon Im, Hyeon Young Park, Jong Cheol Shon, In-Sung Chung, Ho Chan Cho, Kwang-Hyeon Liu, Dae-Kyu Song, Kyoung Heon Kim
    PLOS ONE.2019; 14(3): e0213285.     CrossRef
  • Tissue‐Specific Metabolic Profiles After Prolonged Cardiac Arrest Reveal Brain Metabolome Dysfunction Predominantly After Resuscitation
    Jaewoo Choi, Muhammad Shoaib, Tai Yin, Gautam Nayyar, Koichiro Shinozaki, Jan F. Stevens, Lance B. Becker, Junhwan Kim
    Journal of the American Heart Association.2019;[Epub]     CrossRef
  • Global serum metabolomics profiling of colorectal cancer (Review)
    Nurul Amir Hashim, Sharaniza Ab‑Rahim, Leny Suddin, Mohd Ahmad Saman, Musalmah Mazlan
    Molecular and Clinical Oncology.2019;[Epub]     CrossRef
  • Metabolomic Profiling of Human Spermatozoa in Idiopathic Asthenozoospermia Patients Using Gas Chromatography-Mass Spectrometry
    Kai Zhao, Jianzhong Zhang, Zhen Xu, Yue Xu, Aiming Xu, Wei Chen, Chenkui Miao, Shouyong Liu, Zengjun Wang, Ruipeng Jia
    BioMed Research International.2018; 2018: 1.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Investigation of the effects of storage and freezing on mixes of heavy‐labeled metabolite and amino acid standards
    Rachel Culp‐Hill, Julie A. Reisz, Kirk C. Hansen, Angelo D'Alessandro
    Rapid Communications in Mass Spectrometry.2017; 31(23): 2030.     CrossRef
  • Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics
    Darrell D. Marshall, Robert Powers
    Progress in Nuclear Magnetic Resonance Spectroscopy.2017; 100: 1.     CrossRef
  • Untargeted metabolomics analysis of adipogenic transformation in OP9‐DL1 cells using liquid chromatography‐mass spectrometry: Implications for thymic adipogenesis
    Jianxin Tan, Yajun Wang, Siliang Wang, Nannan Zhang, Simeng Wu, Zhe Yuan, Xike Zhu
    Cell Biology International.2017; 41(4): 447.     CrossRef
  • Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health
    Pamela Vernocchi, Federica Del Chierico, Lorenza Putignani
    Frontiers in Microbiology.2016;[Epub]     CrossRef
Close layer
Small Heterodimer Partner and Innate Immune Regulation
Jae-Min Yuk, Hyo Sun Jin, Eun-Kyeong Jo
Endocrinol Metab. 2016;31(1):17-24.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.17
  • 5,225 View
  • 57 Download
  • 21 Web of Science
  • 20 Crossref
AbstractAbstract PDFPubReader   

The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues.

Citations

Citations to this article as recorded by  
  • Upregulation of Anti-Angiogenic miR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy
    Sherin Bakhashab, Josie O’Neill, Rosie Barber, Catherine Arden, Jolanta U. Weaver
    Biomedicines.2024; 12(1): 171.     CrossRef
  • Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics
    Zhentao Zhang, Qi Zhang, Yiwen Zhang, Yutao Lou, Luqi Ge, Wanli Zhang, Wen Zhang, Feifeng Song, Ping Huang
    Biochemical Pharmacology.2024; 219: 115956.     CrossRef
  • Chlorpyrifos induces apoptosis and necroptosis via the activation of CYP450s pathway mediated by nuclear receptors in LMH cells
    Xinyu Zhang, Kexin Sun, Xu Wang, Xu Shi, Duqiang Gong
    Environmental Science and Pollution Research.2023; 30(1): 1060.     CrossRef
  • A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection
    Gaber El-Saber Batiha, Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Fadia S. Youssef, Suzy A. El-Sherbeni, Walaa A. Negm
    Inflammopharmacology.2023; 31(1): 9.     CrossRef
  • Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms?
    Zihang Liu, Panpan Deng, Shengnan Liu, Yiying Bian, Yuanyuan Xu, Qiang Zhang, Huihui Wang, Jingbo Pi
    Antioxidants.2023; 12(1): 172.     CrossRef
  • Small Heterodimer Partner Modulates Macrophage Differentiation during Innate Immune Response through the Regulation of Peroxisome Proliferator Activated Receptor Gamma, Mitogen-Activated Protein Kinase, and Nuclear Factor Kappa B Pathways
    Forkan Ahamed, Natalie Eppler, Elizabeth Jones, Lily He, Yuxia Zhang
    Biomedicines.2023; 11(9): 2403.     CrossRef
  • Natural products modulate NLRP3 in ulcerative colitis
    Jia-Chen Xue, Shuo Yuan, Xiao-Ting Hou, Huan Meng, Bao-Hong Liu, Wen-Wen Cheng, Ming Zhao, Hong-Ben Li, Xue-Fen Guo, Chang Di, Min-Jie Li, Qing-Gao Zhang
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • The effectiveness of small heterodimer partner and FGF 19 levels in prediction of perinatal morbidity in intrahepatic cholestasis of pregnancy
    Mehmet Bayram, Kader Irak, Sami Cifci, Ali Riza Koksal, Cemal Kazezoglu, Zuat Acar, Halil Onur Ozarı, Huseyin Alkim
    Journal of Obstetrics and Gynaecology.2022; 42(5): 1174.     CrossRef
  • Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function
    Ahmad Alatshan, Szilvia Benkő
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • The Orphan Nuclear Receptor Gene NR0B2 Is a Favorite Prognosis Factor Modulated by Multiple Cellular Signal Pathways in Human Liver Cancers
    Runzhi Zhu, Yanjie Tu, Jingxia Chang, Haixia Xu, Jean C. Li, Wang Liu, Ahn-Dao Do, Yuxia Zhang, Jinhu Wang, Benyi Li
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Small heterodimer partner as a predictor of neoadjuvant radiochemotherapy response and survival in patients with rectal cancer: A preliminary study
    Sup Kim, Mina Joo, Min-Kyung Yeo, Moon-June Cho, Jun-Sang Kim, Eun-Kyeong Jo, Jin-Man Kim
    Oncology Letters.2021;[Epub]     CrossRef
  • LPS Stimulation Induces Small Heterodimer Partner Expression Through the AMPK-NRF2 Pathway in Large Yellow Croaker (Larimichthys crocea)
    Jianlong Du, Xiaojun Xiang, Dan Xu, Kun Cui, Yuning Pang, Wei Xu, Kangsen Mai, Qinghui Ai
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • Host Transcription Factors in Hepatitis B Virus RNA Synthesis
    Kristi L. Turton, Vanessa Meier-Stephenson, Maulik D. Badmalia, Carla S. Coffin, Trushar R. Patel
    Viruses.2020; 12(2): 160.     CrossRef
  • Farnesoid X Receptor Activation Protects Liver From Ischemia/Reperfusion Injury by Up‐Regulating Small Heterodimer Partner in Kupffer Cells
    Dan Jin, Tianfei Lu, Ming Ni, Han Wang, Jiang Zhang, Chenpeng Zhong, Chuan Shen, Jun Hao, Ronald W. Busuttil, Jerzy W. Kupiec‐Weglinski, Jianjun Zhang, Ning Xu, Yuan Zhai
    Hepatology Communications.2020; 4(4): 540.     CrossRef
  • Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets
    V. Kumar
    International Immunopharmacology.2020; 89: 107087.     CrossRef
  • Small Heterodimer Partner Controls the Virus-Mediated Antiviral Immune Response by Targeting CREB-Binding Protein in the Nucleus
    Jae-Hoon Kim, Ji-Eun Yoon, Chamilani Nikapitiya, Tae-Hwan Kim, Md Bashir Uddin, Hyun-Cheol Lee, Yong-Hoon Kim, Jung Hwan Hwang, Kiramage Chathuranga, W.A. Gayan Chathuranga, Hueng-Sik Choi, Chul-Joong Kim, Jae U. Jung, Chul-Ho Lee, Jong-Soo Lee
    Cell Reports.2019; 27(7): 2105.     CrossRef
  • Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation
    Haoming Zhou, Han Wang, Ming Ni, Shi Yue, Yongxiang Xia, Ronald W. Busuttil, Jerzy W. Kupiec-Weglinski, Ling Lu, Xuehao Wang, Yuan Zhai
    Journal of Hepatology.2018; 69(1): 99.     CrossRef
  • Cholangiocyte‐derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans
    Xiaojiaoyang Li, Runping Liu, Zhiming Huang, Emily C. Gurley, Xuan Wang, Juan Wang, Hongliang He, Hu Yang, Guanhua Lai, Luyong Zhang, Jasmohan S. Bajaj, Melanie White, William M. Pandak, Phillip B. Hylemon, Huiping Zhou
    Hepatology.2018; 68(2): 599.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Emerging roles of orphan nuclear receptors in regulation of innate immunity
    Hyo Sun Jin, Tae Sung Kim, Eun-Kyeong Jo
    Archives of Pharmacal Research.2016; 39(11): 1491.     CrossRef
Close layer
Bone Metabolism
Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination
Yong Jun Choi
Endocrinol Metab. 2016;31(1):25-30.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.25
  • 5,560 View
  • 74 Download
  • 37 Web of Science
  • 32 Crossref
AbstractAbstract PDFPubReader   

Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry.

Citations

Citations to this article as recorded by  
  • Implications of Vitamin D Status for Children’s Bone Health: A Data Mining Analyses of Observational Studies
    Mariana Leonel Martins, Beatriz Fernandes Arrepia, Lucas Jural, José Vicente-Gomila, Daniele Masterson, Lucianne Cople Maia, Maria Augusta Visconti, Andréa Fonseca-Gonçalves
    Pesquisa Brasileira em Odontopediatria e Clínica Integrada.2024;[Epub]     CrossRef
  • Intrarater and Interrater Reliability of Quantitative Ultrasound Speed of Sound by Trained Raters at the Distal Radius in Postmenopausal Women
    Cynthia J. Watson, Matthew J. de Ruig, Kent T. Saunders
    Journal of Geriatric Physical Therapy.2024; 47(4): E159.     CrossRef
  • Seated push-up tests: Reliable and valid measures for older individuals when used by primary healthcare providers
    Pakwipa Chokphukiao, Puttipong Poncumhak, Thiwabhorn Thaweewannakij, Roongnapa Intaruk, Sugalya Amatachaya
    Journal of Back and Musculoskeletal Rehabilitation.2023; 36(4): 871.     CrossRef
  • The mandibular bone structure in children by fractal dimension and its correlation with pixel intensity values: a pilot study
    Beatriz Fernandes Arrepia, Thaiza Gonçalves Rocha, Annie Seabra Medeiros, Matheus Diniz Ferreira, Andrea Fonseca-Gonçalves, Maria Augusta Visconti
    Oral Radiology.2023; 39(4): 771.     CrossRef
  • Phase Angle, Inflammation, and Sarcopenia in Late Postoperative Roux-En-Y Gastric Bypass
    Gisele Florêncio, Aglécio Souza, Elinton Chaim, Allan Santos, Louise Duran, Camila Carvalho, Sarah Monte Alegre
    Journal of Clinical Medicine.2023; 12(15): 5124.     CrossRef
  • Obesity history, physical exam, laboratory, body composition, and energy expenditure: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022
    Karlijn Burridge, Sandra M. Christensen, Angela Golden, Amy B. Ingersoll, Justin Tondt, Harold E. Bays
    Obesity Pillars.2022; 1: 100007.     CrossRef
  • Body Composition as a Modulator of Bone Health Changes in Patients with Inflammatory Bowel Disease
    Iulia Soare, Anca Sirbu, Miruna Popa, Sorina Martin, Cristian George Tieranu, Bogdan Mateescu, Mircea Diculescu, Carmen Barbu, Simona Fica
    Life.2022; 12(2): 272.     CrossRef
  • Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population
    Liting Mao, Ziqiang Xia, Liang Pan, Jun Chen, Xian Liu, Zhiqiang Li, Zhaoxian Yan, Gengbin Lin, Huisen Wen, Bo Liu
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Validity and feasibility of using a seated push-up test among community-dwelling older adults
    Puttipong Poncumhak, Supaporn Phadungkit, Pakwipa Chokphukiao, Roongnapa Intaruk, Pipatana Amatachaya, Sugalya Amatachaya
    Hong Kong Physiotherapy Journal.2022; 42(02): 125.     CrossRef
  • Calcium status assessment at the population level: Candidate approaches and challenges
    Ziaul H. Rana, Megan W. Bourassa, Filomena Gomes, Anuradha Khadilkar, Rubina Mandlik, Victor Owino, John M. Pettifor, Daniel E. Roth, Julie Shlisky, Prashanth Thankachan, Connie M. Weaver
    Annals of the New York Academy of Sciences.2022; 1517(1): 93.     CrossRef
  • Does the Severity of Obesity Influence Bone Mineral Density Values in Premenopausal Women?
    Emneh Hammoud, Hechmi Toumi, Christophe Jacob, Antonio Pinti, Eric Lespessailles, Rawad El Hage
    Journal of Clinical Densitometry.2021; 24(2): 225.     CrossRef
  • Uremic Sarcopenia and Its Possible Nutritional Approach
    Annalisa Noce, Giulia Marrone, Eleonora Ottaviani, Cristina Guerriero, Francesca Di Daniele, Anna Pietroboni Zaitseva, Nicola Di Daniele
    Nutrients.2021; 13(1): 147.     CrossRef
  • Effect of Tissue-Selective Estrogen Complex on Hip Structural Geometry in Postmenopausal Women: A 12-Month Study
    Bo Mi Kim, Sung Eun Kim, Dong-Yun Lee, DooSeok Choi
    Frontiers in Endocrinology.2021;[Epub]     CrossRef
  • A Core Omnigenic Non-coding Trait Governing Dex-Induced Osteoporotic Effects Identified Without DEXA
    Li Lu, Yanzhen Cai, Xiaoling Luo, Zhangting Wang, Sin Hang Fung, Huanhuan Jia, Chi Lam Yu, Wai Yee Chan, Kai Kei Miu, Wende Xiao
    Frontiers in Pharmacology.2021;[Epub]     CrossRef
  • Association between rs12742784 polymorphism and hip fracture, bone mineral density, and EPHB2 mRNA expression levels in elderly Chinese women
    Z. Ruan, Y. Zhu, Z. Lin, H. Long, R. Zhao, B. Sun, L. Cheng, S. Zhao
    Climacteric.2020; 23(1): 93.     CrossRef
  • The Performance of a Calcaneal Quantitative Ultrasound Device, CM-200, in Stratifying Osteoporosis Risk among Malaysian Population Aged 40 Years and Above
    Shaanthana Subramaniam, Chin-Yi Chan, Ima Nirwana Soelaiman, Norazlina Mohamed, Norliza Muhammad, Fairus Ahmad, Pei-Yuen Ng, Nor Aini Jamil, Noorazah Abd Aziz, Kok-Yong Chin
    Diagnostics.2020; 10(4): 178.     CrossRef
  • Influence of sarcopenia on bone health parameters in a group of eumenorrheic obese premenopausal women
    Emneh Hammoud, Hechmi Toumi, Christophe Jacob, Antonio Pinti, Eric Lespessailles, Rawad El Hage
    Journal of Bone and Mineral Metabolism.2020; 38(3): 385.     CrossRef
  • Sex differences in disease activity and efficacy of treatment in spondyloarthritis: is body composition the cause?
    Sebastián Ibáñez Vodnizza, Irene van der Horst-Bruinsma
    Current Opinion in Rheumatology.2020; 32(4): 337.     CrossRef
  • The Effect of Self-Reported Lactose Intolerance and Dairy Consumption on Bone Mineral Density among American Hip Arthroplasty Patients: A Cross-Sectional Study
    Nikola K. Hamilton, Omorogieva Ojo, Amanda Rodrigues Amorim Adegboye
    International Journal of Environmental Research and Public Health.2020; 17(19): 7182.     CrossRef
  • A Prospective, Controlled, Multicenter Study to Evaluate the Clinical Outcome of Implant Treatment in Women with Osteoporosis/Osteopenia: 5-Year Results
    A. Temmerman, L. Rasmusson, A. Kübler, A. Thor, J. Merheb, M. Quirynen
    Journal of Dental Research.2019; 98(1): 84.     CrossRef
  • Assessment of BMD and Statistical Analysis for Osteoporosis Detection
    S. M. Nazia Fathima, R. Tamil Selvi, M. Parisa Beham
    Biomedical and Pharmacology Journal.2019; 12(04): 1907.     CrossRef
  • The association between CD31hiEmcnhi endothelial cells and bone mineral density in Chinese women
    Yong Zhu, Zhe Ruan, Zhangyuan Lin, Haitao Long, Ruibo Zhao, Buhua Sun, Liang Cheng, Lanhua Tang, Zhuying Xia, Changjun Li, Shushan Zhao
    Journal of Bone and Mineral Metabolism.2019; 37(6): 987.     CrossRef
  • Body composition in patients with chronic obstructive pulmonary disease
    E. V. Bolotova, A. V. Dudnikova, V. V. Yavlyanskaya
    Russian Pulmonology.2018; 28(4): 453.     CrossRef
  • Fat Mass Lowers the Response to Tumor Necrosis Factor-α Blockers in Patients with Ankylosing Spondylitis
    Sebastián E. Ibáñez Vodnizza, Michael T. Nurmohamed, Ingrid M. Visman, J. Christiaan van Denderen, Willem F. Lems, Francisca Jaime, Irene E. van der Horst–Bruinsma
    The Journal of Rheumatology.2017; 44(9): 1355.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Muscle wasting in male TNF-α blocker naïve ankylosing spondylitis patients: a comparison of gender differences in body composition
    Sebastián Ibáñez Vodnizza, Ingrid M. Visman, Christiaan van Denderen, Willem F. Lems, Francisca Jaime, Michael T. Nurmohamed, Irene E. van der Horst-Bruinsma
    Rheumatology.2017; 56(9): 1566.     CrossRef
  • Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons
    Giuseppe Sergi, Marina De Rui, Brendon Stubbs, Nicola Veronese, Enzo Manzato
    Aging Clinical and Experimental Research.2017; 29(4): 591.     CrossRef
  • Comparisons of TBS and lumbar spine BMD in the associations with vertebral fractures according to the T-scores: A cross-sectional observation
    Jie-Eun Lee, Kyoung Min Kim, Lee-Kyung Kim, Kyong Young Kim, Tae Jung Oh, Jae Hoon Moon, Sung Hee Choi, Soo Lim, Sang Wan Kim, Chan Soo Shin, Hak Chul Jang
    Bone.2017; 105: 269.     CrossRef
  • The Influence of Tribological Pairings and Other Factors on Migration Patterns of Short Stems in Total Hip Arthroplasty
    Thilo Floerkemeier, Michael Schwarze, Christof Hurschler, Jens Gronewold, Henning Windhagen, Gabriela von Lewinski, Stefan Budde
    BioMed Research International.2017; 2017: 1.     CrossRef
  • Associations Between Fat Mass and Multisite Pain: A Five‐Year Longitudinal Study
    Feng Pan, Laura Laslett, Leigh Blizzard, Flavia Cicuttini, Tania Winzenberg, Changhai Ding, Graeme Jones
    Arthritis Care & Research.2017; 69(4): 509.     CrossRef
  • Development and validation of the Fracture Risk Scale (FRS) that predicts fracture over a 1-year time period in institutionalised frail older people living in Canada: an electronic record-linked longitudinal cohort study
    George Ioannidis, Micaela Jantzi, Jenn Bucek, Jonathan D Adachi, Lora Giangregorio, John Hirdes, Laura Pickard, Alexandra Papaioannou
    BMJ Open.2017; 7(9): e016477.     CrossRef
  • Serum CX3CL1/fractalkine concentrations are positively associated with disease severity in postmenopausal osteoporotic patients
    Yi-Ding Chen, Ci-You Huang, Hai-Ying Liu, Wei-Feng Yao, Wei-guo Wu, Yu-Lian Lu, Wen Wang
    British Journal of Biomedical Science.2016; 73(3): 121.     CrossRef
Close layer
Adrenal gland
In Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use
Su Han Cho, Jang Hoe Kim, Wook Song
Endocrinol Metab. 2016;31(1):31-37.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.31
  • 4,310 View
  • 56 Download
  • 20 Web of Science
  • 17 Crossref
AbstractAbstract PDFPubReader   

Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and aging. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and motion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the immobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyography shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are observed. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to decreased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased use animal models and encourages further studies.

Citations

Citations to this article as recorded by  
  • Chronic obstructive pulmonary disease as a risk factor for sarcopenia: A systematic review and meta-analysis
    Zhenjie Yu, Jingchun He, Yawen Chen, Ziqi Zhou, Lan Wang, Maurizio Balbi
    PLOS ONE.2024; 19(4): e0300730.     CrossRef
  • The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms
    Gargi Ahuja, Y. Laurisa Arenales Arauz, Marieke J. G. van Heuvelen, Arjan Kortholt, Tamás Oroszi, Eddy A. van der Zee
    Frontiers in Neurology.2024;[Epub]     CrossRef
  • Saponin extract from Achyranthes bidentata Blume alleviates disuse-induced muscle atrophy through PI3K/Akt signaling pathway
    Yi Shi, Zhuang-Wei Zhang, Ming-Ming Du, Jing Wu, Jian-Xin Li
    Journal of Ethnopharmacology.2023; 312: 116458.     CrossRef
  • Pathophysiological mechanisms of reduced physical activity: Insights from the human step reduction model and animal analogues
    Fabio Sarto, Roberto Bottinelli, Martino V. Franchi, Simone Porcelli, Bostjan Simunič, Rado Pišot, Marco V. Narici
    Acta Physiologica.2023;[Epub]     CrossRef
  • A non-invasive mouse model that recapitulates disuse-induced muscle atrophy in immobilized patients
    Kun-Chang Wu, Hsiang-Wen Lin, Po-Chen Chu, Chia-Ing Li, Hsiang-Han Kao, Chih-Hsueh Lin, Yu-Jung Cheng
    Scientific Reports.2023;[Epub]     CrossRef
  • Whole Body Vibration Improves Spatial Memory, Anxiety-Like Behavior, and Motor Performance in Aged Male and Female Rats
    Tamás Oroszi, Eva Geerts, Sietse F. de Boer, Regien G. Schoemaker, Eddy A. van der Zee, Csaba Nyakas
    Frontiers in Aging Neuroscience.2022;[Epub]     CrossRef
  • Hind-limb unloading in rodents: Current evidence and perspectives
    Anna Hawliczek, Bianca Brix, Shamma Al Mutawa, Hanan Alsuwaidi, Stefan Du Plessis, Yunfang Gao, Rizwan Qaisar, Ruqaiyyah Siddiqui, Adel B. Elmoselhi, Nandu Goswami
    Acta Astronautica.2022; 195: 574.     CrossRef
  • Chronic whole body vibration ameliorates hippocampal neuroinflammation, anxiety-like behavior, memory functions and motor performance in aged male rats dose dependently
    Tamás Oroszi, Sietse F. de Boer, Csaba Nyakas, Regien G. Schoemaker, Eddy A. van der Zee
    Scientific Reports.2022;[Epub]     CrossRef
  • Sarcopenia – Molecular mechanisms and open questions
    Petra Wiedmer, Tobias Jung, José Pedro Castro, Laura C.D. Pomatto, Patrick Y. Sun, Kelvin J.A. Davies, Tilman Grune
    Ageing Research Reviews.2021; 65: 101200.     CrossRef
  • Sensitivity of subcellular components of neuromuscular junctions to decreased neuromuscular activity
    Michael R. Deschenes, Audrey M. Trebelhorn, Madeline C. High, Hannah L. Tufts, Jeongeun Oh
    Synapse.2021;[Epub]     CrossRef
  • Muscle unloading: A comparison between spaceflight and ground‐based models
    Rizwan Qaisar, Asima Karim, Adel B. Elmoselhi
    Acta Physiologica.2020;[Epub]     CrossRef
  • A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation
    Wei Cui, Chen-Xi Liu, Yu-Chao Zhang, Qi Shen, Zhen-Hua Feng, Jie Wang, Sheng-Feng Lu, Jing Wu, Jian-Xin Li
    Toxicology and Applied Pharmacology.2019; 378: 114625.     CrossRef
  • Changes in Membrane Ceramide Pools in Rat Soleus Muscle in Response to Short-Term Disuse
    Alexey M. Petrov, Maria N. Shalagina, Vladimir A. Protopopov, Valeriy G. Sergeev, Sergey V. Ovechkin, Natalia G. Ovchinina, Alexey V. Sekunov, Andrey L. Zefirov, Guzalia F. Zakirjanova, Irina G. Bryndina
    International Journal of Molecular Sciences.2019; 20(19): 4860.     CrossRef
  • Inducing Physical Inactivity in Mice: Preventing Climbing and Reducing Cage Size Negatively Affect Physical Fitness and Body Composition
    Peter Roemers, Yasmin Hulst, Steffen van Heijningen, Gertjan van Dijk, Marieke J. G. van Heuvelen, Peter P. De Deyn, Eddy A. van der Zee
    Frontiers in Behavioral Neuroscience.2019;[Epub]     CrossRef
  • Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms
    Frank W. Booth, Christian K. Roberts, John P. Thyfault, Gregory N. Ruegsegger, Ryan G. Toedebusch
    Physiological Reviews.2017; 97(4): 1351.     CrossRef
  • The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice
    Mohamed I. Elashry, Antonios Matsakas, Sabine Wenisch, Stefan Arnhold, Ketan Patel
    Acta Histochemica.2017; 119(5): 582.     CrossRef
  • Mechanical, histological, and functional properties remain inferior in conservatively treated Achilles tendons in rodents: Long term evaluation
    Benjamin R. Freedman, George W. Fryhofer, Nabeel S. Salka, Harina A. Raja, Cody D. Hillin, Courtney A. Nuss, Daniel C. Farber, Louis J. Soslowsky
    Journal of Biomechanics.2017; 56: 55.     CrossRef
Close layer
Adrenal gland
How to Establish Clinical Prediction Models
Yong-ho Lee, Heejung Bang, Dae Jung Kim
Endocrinol Metab. 2016;31(1):38-44.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.38
  • 10,424 View
  • 215 Download
  • 119 Web of Science
  • 113 Crossref
AbstractAbstract PDFPubReader   

A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice.

Citations

Citations to this article as recorded by  
  • Models to predict length of stay in the emergency department: a systematic literature review and appraisal
    Raheleh Mahboub Farimani, Hesam Karim, Alireza Atashi, Fariba Tohidinezhad, Kambiz Bahaadini, Ameen Abu-Hanna, Saeid Eslami
    BMC Emergency Medicine.2024;[Epub]     CrossRef
  • The MISOPRED score: Development and validation of a clinical scoring system to predict the effectiveness of Misoprostol treatment for early pregnancy loss
    Tomer Bar-Noy, Ofer Limonad, Erika Gandelsman, Alon Shrim, Hila Sharabi, Raphy Zarecki, Mordechai Hallak, Ilan Bruchim, Federico Ferrari
    PLOS ONE.2024; 19(5): e0303607.     CrossRef
  • The Brilliance, Attitude, Leadership and Materials (BALM) framework of clinical excellence: an adoptable model for sub-Saharan Africa
    Taoreed Azeez
    Academic Medicine & Surgery.2024;[Epub]     CrossRef
  • Risk prediction models for diabetic nephropathy among type 2 diabetes patients in China: a systematic review and meta-analysis
    Wenbin Xu, Yanfei Zhou, Qian Jiang, Yiqian Fang, Qian Yang
    Frontiers in Endocrinology.2024;[Epub]     CrossRef
  • Risk Assessment Tool in Predicting the Therapeutic Outcomes of Antiseizure Medication in Adults with Epilepsy
    Rose Aniza Rusli, Mohd Makmor Bakry, Noraida Mohamed Shah, Xin Ling Loo, Stefanie Kar Yan Hung
    Therapeutics and Clinical Risk Management.2024; Volume 20: 529.     CrossRef
  • Development of an IVF prediction model for donor oocytes: a retrospective analysis of 10 877 embryo transfers
    Oisin Fitzgerald, Jade Newman, Luk Rombauts, Alex Polyakov, Georgina M Chambers
    Human Reproduction.2024; 39(10): 2274.     CrossRef
  • Ambulation recovery prediction after hip fracture surgery using the Hip Fracture Short-Term Ambulation Prediction tool
    Nath Adulkasem, Pojchong Chotiyarnwong, Ekasame Vanitcharoenkul, Aasis Unnanuntana
    Journal of Rehabilitation Medicine.2024; 56: jrm40780.     CrossRef
  • Separating Risk Prediction: Myocardial Infarction vs. Ischemic Stroke in 6.2M Screenings
    Wonyoung Jung, Sang Hyun Park, Kyungdo Han, Su-Min Jeong, In Young Cho, Kihyung Kim, Yerim Kim, Sung Eun Kim, Dong Wook Shin
    Healthcare.2024; 12(20): 2080.     CrossRef
  • Predicting mid- and late-life dementia risk in primary care: A prognostic study from a national health screening cohort
    Wonyoung Jung, Sang Hyun Park, SangYun Kim, Jinkook Lee, Junhee Park, Su-Min Jeong, Seung-Yeon Lee, Kyungdo Han, Dong Wook Shin
    Psychiatry Research.2024; 342: 116237.     CrossRef
  • Development and Validation of a Prognostic Model to Predict Hearing Recovery for Patients With Chronic Otitis Media
    Fengyang Xie, Xiaoyue Zhen, Haiyuan Zhu, Yan Kou, Changle Li, Ling Guo, Li Shi, Jie Han, Xuanchen Zhou
    Ear, Nose & Throat Journal.2023; 102(7): NP327.     CrossRef
  • The reporting of prognostic prediction models for obstetric care was poor: a cross-sectional survey of 10-year publications
    Chunrong Liu, Yana Qi, Xinghui Liu, Meng Chen, Yiquan Xiong, Shiyao Huang, Kang Zou, Jing Tan, Xin Sun
    BMC Medical Research Methodology.2023;[Epub]     CrossRef
  • Severity of Illness Scores and Biomarkers for Prognosis of Patients with Coronavirus Disease 2019
    Rodrigo Cavallazzi, James Bradley, Thomas Chandler, Stephen Furmanek, Julio A. Ramirez
    Seminars in Respiratory and Critical Care Medicine.2023; 44(01): 075.     CrossRef
  • Prognostic risk factor of major salivary gland carcinomas and survival prediction model based on random survival forests
    Yufan Chen, Guoli Li, Wenmei Jiang, Rong Cheng Nie, Honghao Deng, Yingle Chen, Hao Li, Yanfeng Chen
    Cancer Medicine.2023; 12(9): 10899.     CrossRef
  • Semantic Visualization in Functional Recovery Prediction of Intravenous Thrombolysis following Acute Ischemic Stroke in Patients by Using Biostatistics: An Exploratory Study
    Chih-Chun Hsiao, Chun-Gu Cheng, Cheng-Chueh Chen, Hung-Wen Chiu, Hui-Chen Lin, Chun-An Cheng
    Journal of Personalized Medicine.2023; 13(4): 624.     CrossRef
  • Clinical index to quantify the 1-year risk for common postpartum mental disorders at the time of delivery (PMH CAREPLAN): development and internal validation
    Simone N. Vigod, Natalie Urbach, Andrew Calzavara, Cindy-Lee Dennis, Andrea Gruneir, Brett D. Thombs, Mark Walker, Hilary K. Brown
    The British Journal of Psychiatry.2023; 223(3): 422.     CrossRef
  • Prediction of Foot Ulcers Using Artificial Intelligence for Diabetic Patients at Cairo University Hospital, Egypt
    Khadraa Mohamed Mousa, Farid Ali Mousa, Helalia Shalabi Mohamed, Manal Mohamed Elsawy
    SAGE Open Nursing.2023;[Epub]     CrossRef
  • Genetic Studies Investigating Susceptibility to Psoriatic Arthritis: A Narrative Review
    Mehreen Soomro, Ryan Hum, Anne Barton, John Bowes
    Clinical Therapeutics.2023; 45(9): 810.     CrossRef
  • Scope, design, and reporting of prediction models for antineoplastic drugs‐related adverse drug events: A systematic review of machine learning and traditional modeling
    Dan Jiang, Zaiwei Song, Yang Hu, Xinya Li, Rongsheng Zhao
    Journal of Evidence-Based Medicine.2023; 16(4): 420.     CrossRef
  • Using the Weibull Accelerated Failure Time Regression Model to Predict Time to Health Events
    Enwu Liu, Ryan Yan Liu, Karen Lim
    Applied Sciences.2023; 13(24): 13041.     CrossRef
  • Development and validation of a nomogram for predicting low birth weight among pregnant women who had antenatal care visits at Debre Markos Comprehensive and Specialized Hospital, Ethiopia
    Bezawit Melak Fente, Getayeneh Antehunegn Tesema, Temesgen Worku Gudayu, Mengstu Melkamu Asaye
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • Prediction of psychosis: model development and internal validation of a personalized risk calculator
    Tae Young Lee, Wu Jeong Hwang, Nahrie S. Kim, Inkyung Park, Silvia Kyungjin Lho, Sun-Young Moon, Sanghoon Oh, Junhee Lee, Minah Kim, Choong-Wan Woo, Jun Soo Kwon
    Psychological Medicine.2022; 52(13): 2632.     CrossRef
  • Designing a Predictive Model for Colorectal Neoplasia Diagnosis Based on Clinical and Laboratory Findings in Colonoscopy Candidate Patients
    H. Ghajari, A. Sadeghi, S. Khodakarim, M. Zali, S. S. Hashemi Nazari
    Journal of Gastrointestinal Cancer.2022; 53(4): 880.     CrossRef
  • Avoiding immediate whole-body trauma CT: a prospective observational study in stable trauma patients
    Elisa Reitano, Stefano Granieri, Fabrizio Sammartano, Stefania Cimbanassi, Miriam Galati, Shailvi Gupta, Angelo Vanzulli, Osvaldo Chiara
    Updates in Surgery.2022; 74(1): 343.     CrossRef
  • Survival Estimation, Prognostic Factors Evaluation, and Prognostic Prediction Nomogram Construction of Breast Cancer Patients with Bone Metastasis in the Department of Bone and Soft Tissue Tumor: A Single Center Experience of 8 Years in Tianjin, China
    Yao Xu, Haixiao Wu, Guijun Xu, Zhuming Yin, Xin Wang, Vladimir P. Chekhonin, Karl Peltzer, Shu Li, Huiyang Li, Jin Zhang, Wenjuan Ma, Chao Zhang, Sharad Goyal
    The Breast Journal.2022; 2022: 1.     CrossRef
  • Machine Learning Model-Based Simple Clinical Information to Predict Decreased Left Atrial Appendage Flow Velocity
    Chao Li, Guanhua Dou, Yipu Ding, Ran Xin, Jing Wang, Jun Guo, Yundai Chen, Junjie Yang
    Journal of Personalized Medicine.2022; 12(3): 437.     CrossRef
  • Performance of Diabetes and Kidney Disease Screening Scores in Contemporary United States and Korean Populations
    Liela Meng, Keun-Sang Kwon, Dae Jung Kim, Yong-ho Lee, Jeehyoung Kim, Abhijit V. Kshirsagar, Heejung Bang
    Diabetes & Metabolism Journal.2022; 46(2): 273.     CrossRef
  • The Prediction of Diabetes
    Lalit Kumar, Prashant Johri
    International Journal of Reliable and Quality E-Healthcare.2022; 11(1): 1.     CrossRef
  • Endoscopic detection of esophageallow‐gradesquamous dysplasia: How to predict pathologic upgrades before treatment?
    Han Chen, Xiao Ying Zhou, Shuo Li, Liu Qin Jiang, Jie Hua, Xin Min Si, Guo Xin Zhang
    Journal of Digestive Diseases.2022; 23(4): 209.     CrossRef
  • Predicting outcomes after traumatic brain injury: A novel hospital prediction model for a patient reported outcome
    Rachel S. Morris, Juan F. Figueroa, Courtney J. Pokrzywa, Jason K. Barber, Nancy R. Temkin, Carisa Bergner, Basil S. Karam, Patrick Murphy, Lindsay D. Nelson, Purushottam Laud, Zara Cooper, Marc de Moya, Colleen Trevino, Christopher J. Tignanelli, Terri A
    The American Journal of Surgery.2022; 224(4): 1150.     CrossRef
  • Investigating factors affecting musculoskeletal disorders: Predictive models for identifying caregivers at risk
    Abdulrahman M. Khamaj, Abdulelah M. Ali, Mohd Mukhtar Alam
    Work.2022; 72(4): 1311.     CrossRef
  • A scoping review of complication prediction models in spinal surgery: An analysis of model development, validation and impact
    Toros C. Canturk, Daniel Czikk, Eugene K. Wai, Philippe Phan, Alexandra Stratton, Wojtek Michalowski, Stephen Kingwell
    North American Spine Society Journal (NASSJ).2022; 11: 100142.     CrossRef
  • Dynamic Predictive Models With Visualized Machine Learning for Assessing Chondrosarcoma Overall Survival
    Wenle Li, Gui Wang, Rilige Wu, Shengtao Dong, Haosheng Wang, Chan Xu, Bing Wang, Wanying Li, Zhaohui Hu, Qi Chen, Chengliang Yin
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Prognostic Nomogram of Osteocarcinoma after Surgical Treatment
    Qiuli Wu, Canchun Yang, Haolin Yan, Zheyu Wang, Zhilei Zhang, Qiwei Wang, Renyuan Huang, Xumin Hu, Bo Li, Xueliang Wu
    Journal of Oncology.2022; 2022: 1.     CrossRef
  • External validation and clinical application of the predictive model for severe hypoglycemia
    Jae-Seung Yun, Kyungdo Han, Soo-Yeon Choi, Seon-Ah Cha, Yu-Bae Ahn, Seung-Hyun Ko
    Frontiers in Endocrinology.2022;[Epub]     CrossRef
  • Clustering of trauma patients based on longitudinal data and the application of machine learning to predict recovery
    Kostas Stoitsas, Saurabh Bahulikar, Leonie de Munter, Mariska A. C. de Jongh, Maria A. C. Jansen, Merel M. Jung, Marijn van Wingerden, Katrijn Van Deun
    Scientific Reports.2022;[Epub]     CrossRef
  • Clinical predictors of antipsychotic treatment resistance: Development and internal validation of a prognostic prediction model by the STRATA-G consortium
    Sophie E. Smart, Deborah Agbedjro, Antonio F. Pardiñas, Olesya Ajnakina, Luis Alameda, Ole A. Andreassen, Thomas R.E. Barnes, Domenico Berardi, Sara Camporesi, Martine Cleusix, Philippe Conus, Benedicto Crespo-Facorro, Giuseppe D'Andrea, Arsime Demjaha, M
    Schizophrenia Research.2022; 250: 1.     CrossRef
  • Factors associated with low-compliance bladder in end-stage renal disease patients and development of a clinical prediction model for urodynamic evaluation: the DUDi score
    Teerayut Tangpaitoon, Valeerat Swatesutipun
    International Urology and Nephrology.2022; 55(1): 75.     CrossRef
  • Improving Machine Learning Diabetes Prediction Models for the Utmost Clinical Effectiveness
    Juyoung Shin, Joonyub Lee, Taehoon Ko, Kanghyuck Lee, Yera Choi, Hun-Sung Kim
    Journal of Personalized Medicine.2022; 12(11): 1899.     CrossRef
  • Assessment of Simple Bedside Wound Characteristics for a Prediction Model for Diabetic Foot Ulcer Outcomes
    Clara Bender, Simon Lebech Cichosz, Louise Pape-Haugaard, Merete Hartun Jensen, Susan Bermark, Anders Christian Laursen, Ole Hejlesen
    Journal of Diabetes Science and Technology.2021; 15(5): 1161.     CrossRef
  • A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study
    Rozeta Sokou, Daniele Piovani, Aikaterini Konstantinidi, Andreas G. Tsantes, Stavroula Parastatidou, Maria Lampridou, Georgios Ioakeimidis, Antonis Gounaris, Nicoletta Iacovidou, Anastasios G. Kriebardis, Marianna Politou, Petros Kopterides, Stefanos Bono
    Thrombosis and Haemostasis.2021; 121(02): 131.     CrossRef
  • Development and validation of a risk assessment nomogram for venous thromboembolism associated with hospitalized postoperative Chinese breast cancer patients
    Jing Li, Wan‐Min Qiang, Yan Wang, Xiao‐Yuan Wang
    Journal of Advanced Nursing.2021; 77(1): 473.     CrossRef
  • The role of behaviour problems in screening for mental ill-health in adults with intellectual disability
    F. Westlake, A. Hassiotis, G. Unwin, V. Totsika
    The European Journal of Psychiatry.2021; 35(2): 122.     CrossRef
  • Deep learning model for classifying endometrial lesions
    YunZheng Zhang, ZiHao Wang, Jin Zhang, CuiCui Wang, YuShan Wang, Hao Chen, LuHe Shan, JiaNing Huo, JiaHui Gu, Xiaoxin Ma
    Journal of Translational Medicine.2021;[Epub]     CrossRef
  • Exploration and Development of a Simpler Respiratory Distress Observation Scale (modRDOS-4) as a Dyspnea Screening Tool: A Prospective Bedside Study
    Ru Xin Wong, Ho Shirlynn, Yen Sin Koh, Stella Goh Seow Lin, Daniel Quah, Qingyuan Zhuang
    Palliative Medicine Reports.2021; 2(1): 9.     CrossRef
  • Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types
    Sarah Denzler, Diem Vuong, Marta Bogowicz, Matea Pavic, Thomas Frauenfelder, Sandra Thierstein, Eric Innocents Eboulet, Britta Maurer, Janine Schniering, Hubert Szymon Gabryś, Isabelle Schmitt-Opitz, Miklos Pless, Robert Foerster, Matthias Guckenberger, S
    The British Journal of Radiology.2021;[Epub]     CrossRef
  • An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design
    Jenna M. Reps, Peter Rijnbeek, Alana Cuthbert, Patrick B. Ryan, Nicole Pratt, Martijn Schuemie
    BMC Medical Informatics and Decision Making.2021;[Epub]     CrossRef
  • Predictive Value of Active Sacroiliitis in MRI for Flare Among Chinese Patients with Axial Spondyloarthritis in Remission
    Qing Zheng, Wen Liu, Yu Huang, Zhenyu Gao, Yuanhui Wu, Xiaohong Wang, Meimei Cai, Yan He, Shiju Chen, Bin Wang, Lingyu Liu, Shuqiang Chen, Hongjie Huang, Ling Zheng, Rihui Kang, Xiaohong Zeng, Jing Chen, Huaning Chen, Junmin Chen, Zhibin Li, Guixiu Shi
    Rheumatology and Therapy.2021; 8(1): 411.     CrossRef
  • Development of a model for predicting the 4-year risk of symptomatic knee osteoarthritis in China: a longitudinal cohort study
    Limin Wang, Han Lu, Hongbo Chen, Shida Jin, Mengqi Wang, Shaomei Shang
    Arthritis Research & Therapy.2021;[Epub]     CrossRef
  • Digital Communication Biomarkers of Mood and Diagnosis in Borderline Personality Disorder, Bipolar Disorder, and Healthy Control Populations
    George Gillett, Niall M. McGowan, Niclas Palmius, Amy C. Bilderbeck, Guy M. Goodwin, Kate E. A. Saunders
    Frontiers in Psychiatry.2021;[Epub]     CrossRef
  • Prediction of Multiple Organ Failure Complicated by Moderately Severe or Severe Acute Pancreatitis Based on Machine Learning: A Multicenter Cohort Study
    Fumin Xu, Xiao Chen, Chenwenya Li, Jing Liu, Qiu Qiu, Mi He, Jingjing Xiao, Zhihui Liu, Bingjun Ji, Dongfeng Chen, Kaijun Liu, Mirella Giovarelli
    Mediators of Inflammation.2021; 2021: 1.     CrossRef
  • Comparison of multiple statistical models for the development of clinical prediction scores to detect advanced colorectal neoplasms in asymptomatic Thai patients
    Kamonwan Soonklang, Boonying Siribumrungwong, Bunchorn Siripongpreeda, Chirayu Auewarakul
    Medicine.2021; 100(20): e26065.     CrossRef
  • European Childhood Obesity Risk Evaluation (CORE) index based on perinatal factors and maternal sociodemographic characteristics: the Feel4Diabetes-study
    Christina Mavrogianni, George Moschonis, Eva Karaglani, Greet Cardon, Violeta Iotova, Pilar De Miguel-Etayo, Esther M. González-Gil, Κaloyan Tsochev, Tsvetalina Tankova, Imre Rurik, Patrick Timpel, Emese Antal, Stavros Liatis, Konstantinos Makrilakis, Geo
    European Journal of Pediatrics.2021; 180(8): 2549.     CrossRef
  • A prognostic nomogram based on competing endogenous RNA network for clear‐cell renal cell carcinoma
    Yun Peng, Shangrong Wu, Zihan Xu, Dingkun Hou, Nan Li, Zheyu Zhang, Lili Wang, Haitao Wang
    Cancer Medicine.2021; 10(16): 5499.     CrossRef
  • Individual 5-Year Lung Cancer Risk Prediction Model in Korea Using a Nationwide Representative Database
    Yohwan Yeo, Dong Wook Shin, Kyungdo Han, Sang Hyun Park, Keun-Hye Jeon, Jungkwon Lee, Junghyun Kim, Aesun Shin
    Cancers.2021; 13(14): 3496.     CrossRef
  • Development and Validation of a Deep Learning Based Diabetes Prediction System Using a Nationwide Population-Based Cohort
    Sang Youl Rhee, Ji Min Sung, Sunhee Kim, In-Jeong Cho, Sang-Eun Lee, Hyuk-Jae Chang
    Diabetes & Metabolism Journal.2021; 45(4): 515.     CrossRef
  • A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma
    Weifeng Zhang, Han Chen, Guoxin Zhang, Guangfu Jin
    The Journal of Biomedical Research.2021; 35(5): 361.     CrossRef
  • Relationship Between Sensibility Tests and Functional Outcomes in Patients With Traumatic Upper Limb Nerve Injuries: A Systematic Review
    Liheng Chen, Emmanuel Ogalo, Chloe Haldane, Sean G. Bristol, Michael J. Berger
    Archives of Rehabilitation Research and Clinical Translation.2021; 3(4): 100159.     CrossRef
  • Personalized 5-Year Prostate Cancer Risk Prediction Model in Korea Based on Nationwide Representative Data
    Yohwan Yeo, Dong Wook Shin, Jungkwon Lee, Kyungdo Han, Sang Hyun Park, Keun Hye Jeon, Jungeun Shin, Aesun Shin, Jinsung Park
    Journal of Personalized Medicine.2021; 12(1): 2.     CrossRef
  • Utility of prediction model score: a proposed tool to standardize the performance and generalizability of clinical predictive models based on systematic review
    Jeff Ehresman, Daniel Lubelski, Zach Pennington, Bethany Hung, A. Karim Ahmed, Tej D. Azad, Kurt Lehner, James Feghali, Zorica Buser, James Harrop, Jefferson Wilson, Shekar Kurpad, Zoher Ghogawala, Daniel M. Sciubba
    Journal of Neurosurgery: Spine.2021; 34(5): 779.     CrossRef
  • Prodromal clinical, demographic, and socio-ecological correlates of asthma in adults: a 10-year statewide big data multi-domain analysis
    Jennifer N. Fishe, Jiang Bian, Zhaoyi Chen, Hui Hu, Jae Min, Francois Modave, Mattia Prosperi
    Journal of Asthma.2020; 57(11): 1155.     CrossRef
  • Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
    Shannon Wongvibulsin, Katherine C. Wu, Scott L. Zeger
    BMC Medical Research Methodology.2020;[Epub]     CrossRef
  • Prognostic models for predicting overall survival in metastatic castration-resistant prostate cancer: a systematic review
    M. Pinart, F. Kunath, V. Lieb, I. Tsaur, B. Wullich, Stefanie Schmidt
    World Journal of Urology.2020; 38(3): 613.     CrossRef
  • Peripheral Nerve Field Stimulation for Chronic Back Pain: Therapy Outcome Predictive Factors
    Eric‐Jan van Gorp, Sam Eldabe, Konstantin V. Slavin, Philippe Rigoard, Stefaan Goossens, Dorothee Mielke, Giancarlo Barolat, Christ Declerck, Chris Gilmore, Ismaïl Gültuna, Kris C.P. Vissers, Jennifer Tinsley, Rudolf Likar, Pierre‐Philippe Luyet
    Pain Practice.2020; 20(5): 522.     CrossRef
  • Biomarker Score in Risk Prediction: Beyond Scientific Evidence and Statistical Performance
    Heejung Bang
    Diabetes & Metabolism Journal.2020; 44(2): 245.     CrossRef
  • Variable selection strategies and its importance in clinical prediction modelling
    Mohammad Ziaul Islam Chowdhury, Tanvir C Turin
    Family Medicine and Community Health.2020; 8(1): e000262.     CrossRef
  • Reply to the Letter to the Editor: Derivation and Internal Validation of a Clinical Prediction Tool to Predict Nonalcoholic Fatty Liver Disease in Patients With Crohn’s Disease
    Scott McHenry, Matthew A Ciorba, Parakkal Deepak
    Inflammatory Bowel Diseases.2020; 26(6): e46.     CrossRef
  • The application of unsupervised deep learning in predictive models using electronic health records
    Lei Wang, Liping Tong, Darcy Davis, Tim Arnold, Tina Esposito
    BMC Medical Research Methodology.2020;[Epub]     CrossRef
  • Development and evaluation of an osteoarthritis risk model for integration into primary care health information technology
    Jason E. Black, Amanda L. Terry, Daniel J. Lizotte
    International Journal of Medical Informatics.2020; 141: 104160.     CrossRef
  • An Individualized Prediction Model for Long-term Lung Function Trajectory and Risk of COPD in the General Population
    Wenjia Chen, Don D. Sin, J. Mark FitzGerald, Abdollah Safari, Amin Adibi, Mohsen Sadatsafavi
    Chest.2020; 157(3): 547.     CrossRef
  • Optimization of the management of pregnant women at high risk of miscarriage and premature birth
    Yu. A. Semenov, V. F. Dolgushina, M. G. Moscvicheva, V. S. Chulkov
    Rossiiskii vestnik akushera-ginekologa.2020; 20(1): 54.     CrossRef
  • Developing a triage tool for use in identifying people living with HIV who are at risk for non-retention in HIV care
    Merhawi T Gebrezgi, Kristopher P Fennie, Diana M Sheehan, Boubakari Ibrahimou, Sandra G Jones, Petra Brock, Robert A Ladner, Mary Jo Trepka
    International Journal of STD & AIDS.2020; 31(3): 244.     CrossRef
  • The impact of age and comorbidity on the postoperative outcomes after emergency surgical management of complicated intra-abdominal infections
    Carmen Payá-Llorente, Elías Martínez-López, Juan Carlos Sebastián-Tomás, Sandra Santarrufina-Martínez, Nicola de’Angelis, Aleix Martínez-Pérez
    Scientific Reports.2020;[Epub]     CrossRef
  • Precision health through prediction modelling: factors to consider before implementing a prediction model in clinical practice
    Mohammad Z. I. Chowdhury, Tanvir C. Turin
    Journal of Primary Health Care.2020; 12(1): 3.     CrossRef
  • Demystifying artificial intelligence in pharmacy
    Scott D Nelson, Colin G Walsh, Casey A Olsen, Andrew J McLaughlin, Joseph R LeGrand, Nick Schutz, Thomas A Lasko
    American Journal of Health-System Pharmacy.2020; 77(19): 1556.     CrossRef
  • Association does not imply prediction: the accuracy of birthweight in predicting child mortality and anthropometric failure
    Akshay Swaminathan, Rockli Kim, S.V. Subramanian
    Annals of Epidemiology.2020; 50: 7.     CrossRef
  • Who's at Risk? A Prognostic Model for Severity Prediction in Pediatric Acute Pancreatitis
    Peter R. Farrell, Lindsey Hornung, Peter Farmer, Angelica W. DesPain, Esther Kim, Ryan Pearman, Beemnet Neway, Ashley Serrette, Sona Sehgal, James E. Heubi, Tom K. Lin, Jaimie D. Nathan, David S. Vitale, Maisam Abu‐El‐Haija
    Journal of Pediatric Gastroenterology and Nutrition.2020; 71(4): 536.     CrossRef
  • Biomarkers of Fabry Nephropathy: Review and Future Perspective
    Tina Levstek, Bojan Vujkovac, Katarina Trebusak Podkrajsek
    Genes.2020; 11(9): 1091.     CrossRef
  • Coledocolitiasis y pancreatitis: las dificultades de la predicción
    David Benigno Páramo Hernández
    Revista Colombiana de Gastroenterología.2020; 35(3): 266.     CrossRef
  • Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar
    Yan Li, Matthew Sperrin, Darren M Ashcroft, Tjeerd Pieter van Staa
    BMJ.2020; : m3919.     CrossRef
  • Outcome prediction with serial neuron-specific enolase and machine learning in anoxic-ischaemic disorders of consciousness
    Emily Muller, Jonathan P. Shock, Andreas Bender, Julian Kleeberger, Tobias Högen, Martin Rosenfelder, Bubacarr Bah, Alex Lopez-Rolon
    Computers in Biology and Medicine.2019; 107: 145.     CrossRef
  • Machine learning models to predict disease progression among veterans with hepatitis C virus
    Monica A. Konerman, Lauren A. Beste, Tony Van, Boang Liu, Xuefei Zhang, Ji Zhu, Sameer D. Saini, Grace L. Su, Brahmajee K. Nallamothu, George N. Ioannou, Akbar K. Waljee, Davide Bacciu
    PLOS ONE.2019; 14(1): e0208141.     CrossRef
  • A novel risk calculator to predict outcome after surgery for symptomatic spinal metastases; use of a large prospective patient database to personalise surgical management
    David Choi, Menelaos Pavlou, Rumana Omar, Mark Arts, Laurent Balabaud, Jacob Maciej Buchowski, Cody Bunger, Chun Kee Chung, Maarten Hubert Coppes, Bart Depreitere, Michael George Fehlings, Norio Kawahara, Chong-Suh Lee, YeeLing Leung, Juan Antonio Martin-
    European Journal of Cancer.2019; 107: 28.     CrossRef
  • Big Data Research in Neuro-Ophthalmology: Promises and Pitfalls
    Heather E. Moss, Charlotte E. Joslin, Daniel S. Rubin, Steven Roth
    Journal of Neuro-Ophthalmology.2019; 39(4): 480.     CrossRef
  • Nonalcoholic Fatty Liver Disease in Diabetes. Part I: Epidemiology and Diagnosis
    Yong-ho Lee, Yongin Cho, Byung-Wan Lee, Cheol-Young Park, Dae Ho Lee, Bong-Soo Cha, Eun-Jung Rhee
    Diabetes & Metabolism Journal.2019; 43(1): 31.     CrossRef
  • The use of rigorous methods was strongly warranted among prognostic prediction models for obstetric care
    Jing Tan, Yana Qi, Chunrong Liu, Yiquan Xiong, Qiao He, Guiting Zhang, Meng Chen, Guolin He, Wen Wang, Xinghui Liu, Xin Sun
    Journal of Clinical Epidemiology.2019; 115: 98.     CrossRef
  • Support Vector Machines and logistic regression to predict temporal artery biopsy outcomes
    Edsel Ing, Wanhua Su, Matthias Schonlau, Nurhan Torun
    Canadian Journal of Ophthalmology.2019; 54(1): 116.     CrossRef
  • Identifying a risk score for childhood obesity based on predictors identified in pregnant women and 1-year-old infants: An analysis of the data of the Hokkaido Study on Environment and Children’s Health
    Yasuaki Saijo, Yoshiya Ito, Eiji Yoshioka, Yukihiro Sato, Machiko Minatoya, Atsuko Araki, Chihiro Miyashita, Reiko Kishi
    Clinical Pediatric Endocrinology.2019; 28(3): 81.     CrossRef
  • Development and performance evaluation of the Medicines Optimisation Assessment Tool (MOAT): a prognostic model to target hospital pharmacists’ input to prevent medication-related problems
    Cathy Geeson, Li Wei, Bryony Dean Franklin
    BMJ Quality & Safety.2019; 28(8): 645.     CrossRef
  • Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures
    Robert K. Merrill, Rocco M. Ferrandino, Ryan Hoffman, Gene W. Shaffer, Anthony Ndu
    The Journal of Foot and Ankle Surgery.2019; 58(3): 410.     CrossRef
  • Multidimensional screening for predicting pain problems in adults: a systematic review of screening tools and validation studies
    Elke Veirman, Dimitri M. L. Van Ryckeghem, Annick De Paepe, Olivia J. Kirtley, Geert Crombez
    PAIN Reports.2019; 4(5): e775.     CrossRef
  • iHealthcare: Predictive Model Analysis Concerning Big Data Applications for Interactive Healthcare Systems †
    Md. Ataur Rahman Bhuiyan, Md. Rifat Ullah, Amit Kumar Das
    Applied Sciences.2019; 9(16): 3365.     CrossRef
  • Development of personalized mobile assistant for chronic disease patients: diabetes mellitus case study
    M.V. Kabyshev, S.V. Kovalchuk
    Procedia Computer Science.2019; 156: 123.     CrossRef
  • Validation of childhood asthma predictive tools: A systematic review
    Silvia Colicino, Daniel Munblit, Cosetta Minelli, Adnan Custovic, Paul Cullinan
    Clinical & Experimental Allergy.2019; 49(4): 410.     CrossRef
  • Predicting intradialytic hypotension using heart rate variability
    Samel Park, Wook-Joon Kim, Nam-Jun Cho, Chi-Young Choi, Nam Hun Heo, Hyo-Wook Gil, Eun Young Lee
    Scientific Reports.2019;[Epub]     CrossRef
  • Predicting treatment response using pharmacy register in migraine
    Thomas Folkmann Hansen, Mona Ameri Chalmer, Thilde Marie Haspang, Lisette Kogelman, Jes Olesen
    The Journal of Headache and Pain.2019;[Epub]     CrossRef
  • Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers
    Seul Ki Park, Hyeoun-Ae Park, Hee Hwang
    Journal of Korean Academy of Nursing.2019; 49(5): 575.     CrossRef
  • Characteristics and outcome of acute heart failure patients according to the severity of peripheral oedema
    Ahmad Shoaib, Mamas A. Mamas, Qazi S. Ahmad, Theresa M. McDonagh, Suzanna M.C. Hardman, Muhammad Rashid, Robert Butler, Simon Duckett, Duwarakan Satchithananda, James Nolan, Henry J. Dargie, Andrew L. Clark, John G.F. Cleland
    International Journal of Cardiology.2019; 285: 40.     CrossRef
  • Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature
    Laura E. Cowley, Daniel M. Farewell, Sabine Maguire, Alison M. Kemp
    Diagnostic and Prognostic Research.2019;[Epub]     CrossRef
  • Development and validation of a nomogram to predict the prognosis of patients with squamous cell carcinoma of the bladder
    Mei-Di Hu, Si-Hai Chen, Yuan Liu, Ling-Hua Jia
    Bioscience Reports.2019;[Epub]     CrossRef
  • Assessing surgical difficulty in locally advanced mid–low rectal cancer: the accuracy of two MRI‐based predictive scores
    N. de'Angelis, F. Pigneur, A. Martínez‐Pérez, G. C. Vitali, F. Landi, S. A. Gómez‐Abril, M. Assalino, E. Espin, F. Ris, A. Luciani, F. Brunetti
    Colorectal Disease.2019; 21(3): 277.     CrossRef
  • External Validation of START nomogram to predict 3-Month unfavorable outcome in Chinese acute stroke patients
    BaiLi Song, XiangLiang Chen, Dan Tang, Mako Ibrahim, YuKai Liu, Linda Nyame, Teng Jiang, Wei Wang, Xiang Li, Chao Sun, Zheng Zhao, Jie Yang, JunShan Zhou, JianJun Zou
    Journal of Stroke and Cerebrovascular Diseases.2019; 28(6): 1618.     CrossRef
  • Development and Validation of the Korean Diabetes Risk Score: A 10-Year National Cohort Study
    Kyoung Hwa Ha, Yong-ho Lee, Sun Ok Song, Jae-woo Lee, Dong Wook Kim, Kyung-hee Cho, Dae Jung Kim
    Diabetes & Metabolism Journal.2018; 42(5): 402.     CrossRef
  • Clinical relevance and validity of tools to predict infant, childhood and adulthood obesity: a systematic review
    Oliver J Canfell, Robyn Littlewood, Olivia RL Wright, Jacqueline L Walker
    Public Health Nutrition.2018; 21(17): 3135.     CrossRef
  • Letter to Editor
    Laura E Cowley, Sabine A Maguire, Daniel M Farewell, Alison M Kemp
    Law, Probability and Risk.2018; 17(3): 275.     CrossRef
  • Self‐report assessment of severe periodontitis: Periodontal screening score development
    Maria Clotilde Carra, Alice Gueguen, Frédérique Thomas, Bruno Pannier, Giuseppina Caligiuri, Philippe Gabriel Steg, Marie Zins, Philippe Bouchard
    Journal of Clinical Periodontology.2018; 45(7): 818.     CrossRef
  • Predictive validity of the CriSTAL tool for short-term mortality in older people presenting at Emergency Departments: a prospective study
    Magnolia Cardona, Ebony T. Lewis, Mette R. Kristensen, Helene Skjøt-Arkil, Anette Addy Ekmann, Hanne H. Nygaard, Jonas J. Jensen, Rune O. Jensen, Jonas L. Pedersen, Robin M. Turner, Frances Garden, Hatem Alkhouri, Stephen Asha, John Mackenzie, Margaret Pe
    European Geriatric Medicine.2018; 9(6): 891.     CrossRef
  • Prediction of Drug-Related Risks Using Clinical Context Information in Longitudinal Claims Data
    Andreas D. Meid, Andreas Groll, Dirk Heider, Sarah Mächler, Jürgen-Bernhard Adler, Christian Günster, Hans-Helmut König, Walter E. Haefeli
    Value in Health.2018; 21(12): 1390.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Development of Clinical Data Mart of HMG-CoA Reductase Inhibitor for Varied Clinical Research
    Hun-Sung Kim, Hyunah Kim, Yoo Jin Jeong, Tong Min Kim, So Jung Yang, Sun Jung Baik, Seung-Hwan Lee, Jae Hyoung Cho, In Young Choi, Kun-Ho Yoon
    Endocrinology and Metabolism.2017; 32(1): 90.     CrossRef
  • Response to Comment by Ayubi and Safiri. Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample. Diabetes Care 2017;40:751–758
    Laura L. Ekblad, Juha O. Rinne, Pauli Puukka, Hanna Laine, Satu Ahtiluoto, Raimo Sulkava, Matti Viitanen, Antti Jula
    Diabetes Care.2017; 40(9): e136.     CrossRef
  • Encrypted prediction: A hacker's perspective
    Tara Karamlou, Daniel A. Velez, John J. Nigro
    The Journal of Thoracic and Cardiovascular Surgery.2017; 154(6): 2038.     CrossRef
  • Personalized medicine. Closing the gap between knowledge and clinical practice
    Juan-Manuel Anaya, Carolina Duarte-Rey, Juan C. Sarmiento-Monroy, David Bardey, John Castiblanco, Adriana Rojas-Villarraga
    Autoimmunity Reviews.2016; 15(8): 833.     CrossRef
  • Comparison of screening scores for diabetes and prediabetes
    Eduard Poltavskiy, Dae Jung Kim, Heejung Bang
    Diabetes Research and Clinical Practice.2016; 118: 146.     CrossRef
Close layer
Adrenal gland
In Vivo Models for Incretin Research: From the Intestine to the Whole Body
Tae Jung Oh
Endocrinol Metab. 2016;31(1):45-51.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.45
  • 4,837 View
  • 55 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract PDFPubReader   

Incretin hormones are produced by enteroendocrine cells (EECs) in the intestine in response to ingested nutrient stimuli. The incretin effect is defined as the difference in the insulin secretory response between the oral glucose tolerance test and an isoglycemic intravenous glucose infusion study. The pathophysiology of the decreased incretin effect has been studied as decreased incretin sensitivity and/or β-cell dysfunction per se. Interestingly, robust increases in endogenous incretin secretion have been observed in many types of metabolic/bariatric surgery. Therefore, metabolic/bariatric surgery has been extensively studied for incretin physiology, not only the hormones themselves but also alterations in EECs distribution and genetic expression levels of gut hormones. These efforts have given us an enormous understanding of incretin biology from synthesis to in vivo behavior. Further innovative studies are needed to determine the mechanisms and targets of incretin hormones.

Citations

Citations to this article as recorded by  
  • High-intensity infrasound effects on glucose metabolism in rats
    Gonçalo Martins Pereira, Madalena Santos, Sofia S. Pereira, Gonçalo Borrecho, Francisco Tortosa, José Brito, Diamantino Freitas, António Oliveira de Carvalho, Artur Águas, Maria João Oliveira, Pedro Oliveira
    Scientific Reports.2021;[Epub]     CrossRef
  • Parboiled rice metabolism differs in healthy and diabetic individuals with similar improvement in glycemic response
    Samar Hamad, Tasleem A. Zafar, Jiwan Sidhu
    Nutrition.2018; 47: 43.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding
    Christine Loyd, I. Jack Magrisso, Michael Haas, Sowmya Balusu, Radha Krishna, Nobuyuki Itoh, Darleen A. Sandoval, Diego Perez-Tilve, Silvana Obici, Kirk M. Habegger
    Journal of Applied Physiology.2016; 121(3): 687.     CrossRef
Close layer
Mechanisms of Vascular Calcification: The Pivotal Role of Pyruvate Dehydrogenase Kinase 4
Jaechan Leem, In-Kyu Lee
Endocrinol Metab. 2016;31(1):52-61.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.52
  • 5,499 View
  • 74 Download
  • 31 Web of Science
  • 28 Crossref
AbstractAbstract PDFPubReader   

Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive degenerative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, despite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly understood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic strategies.

Citations

Citations to this article as recorded by  
  • Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases
    Ankan Sarkar, Sandip V. Pawar, Kanwaljit Chopra, Manish Jain
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2024; 1870(3): 167021.     CrossRef
  • MAPK14 as a key gene for regulating inflammatory response and macrophage M1 polarization induced by ferroptotic keratinocyte in psoriasis
    Lin Zhou, Yingdong Zhong, Chaowei Li, Yu Zhou, Xi Liu, Lincai Li, Zhengwei Zou, Zhihui Zhong, Junsong Ye
    Inflammation.2024; 47(5): 1564.     CrossRef
  • Pyruvate dehydrogenase kinase 4 promotes osteoblastic potential of BMP9 by boosting Wnt/β-catenin signaling in mesenchymal stem cells
    Yuan-Yuan Yang, Hong-Hong Luo, Yi-Xuan Deng, Xin-Tong Yao, Jie Zhang, Yu-Xi Su, Bai-Cheng He
    The International Journal of Biochemistry & Cell Biology.2023; 154: 106341.     CrossRef
  • lncRNA MEG3 Promotes PDK4/GSK-3β/β-Catenin Axis in MEFs by Targeting miR-532-5p
    Yuan-Yuan Yang, Yi-Xuan Deng, Xin-Tong Yao, Hong-Hong Luo, Wen-Ge He, Xuan-Ling Cao, Rong-Chun Chen, Bai-Cheng He, Hai-Tao Jiang, Jing Wang, Sedat Kacar
    Oxidative Medicine and Cellular Longevity.2023; 2023: 1.     CrossRef
  • Mitochondrial dynamics in vascular remodeling and target-organ damage
    Tong Zhu, Qingxun Hu, Yanggang Yuan, Huijuan Yao, Jian Zhang, Jia Qi
    Frontiers in Cardiovascular Medicine.2023;[Epub]     CrossRef
  • PDK4-dependent hypercatabolism and lactate production of senescent cells promotes cancer malignancy
    Xuefeng Dou, Qiang Fu, Qilai Long, Shuning Liu, Yejun Zou, Da Fu, Qixia Xu, Zhirui Jiang, Xiaohui Ren, Guilong Zhang, Xiaoling Wei, Qingfeng Li, Judith Campisi, Yuzheng Zhao, Yu Sun
    Nature Metabolism.2023; 5(11): 1887.     CrossRef
  • Identification of PDK4 as Hub Gene for Diabetic Nephropathy Using Co-Expression Network Analysis
    Yuanyuan Han, Liangzi Jin, Liangzhi Wang, Lan Wei, Chao Tu
    Kidney and Blood Pressure Research.2023; 48(1): 522.     CrossRef
  • Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2
    Ahmed E. Amer, George S. G. Shehatou, Hassan A. El-Kashef, Manar A. Nader, Ahmed R. El-Sheakh
    Cardiovascular Drugs and Therapy.2022; 36(6): 1047.     CrossRef
  • Diabetic mellitus, vascular calcification and hypoxia: A complex and neglected tripartite relationship
    Xue-Jiao Sun, Nai-Feng Liu
    Cellular Signalling.2022; 91: 110219.     CrossRef
  • Insights Into the Role of Mitochondria in Vascular Calcification
    ZL Zeng, Qing Yuan, Xuyu Zu, Jianghua Liu
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Induced pluripotent stem cell-derived smooth muscle cells to study cardiovascular calcification
    Samantha K. Atkins, Abhijeet R. Sonawane, Romi Brouwhuis, Johana Barrientos, Anna Ha, Maximillian Rogers, Takeshi Tanaka, Takehito Okui, Shiori Kuraoka, Sasha A. Singh, Masanori Aikawa, Elena Aikawa
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria
    Yan Zhong Liu, Zong Xiang Li, Lin Lin Zhang, Dan Wang, Yi Ping Liu
    Frontiers in Cardiovascular Medicine.2022;[Epub]     CrossRef
  • Febuxostat attenuates vascular calcification induced by vitamin D3 plus nicotine in rats
    Ahmed E. Amer, Ahmed R. El-Sheakh, Mohamed F. Hamed, Hassan A. El-Kashef, Manar A. Nader, George S.G. Shehatou
    European Journal of Pharmaceutical Sciences.2021; 156: 105580.     CrossRef
  • Mitochondria and traffic-related air pollution linked coronary artery calcification: exploring the missing link
    Bhavana Sivakumar, Gino A. Kurian
    Reviews on Environmental Health.2021; 36(4): 545.     CrossRef
  • Mitochondria Homeostasis and Vascular Medial Calcification
    Min li, Yi Zhu, Sandip Kumar Jaiswal, Nai-Feng Liu
    Calcified Tissue International.2021; 109(2): 113.     CrossRef
  • POSTN promotes diabetic vascular calcification by interfering with autophagic flux
    Xue-Jiao Sun, Wen-Qi Ma, Yi Zhu, Nai-Feng Liu
    Cellular Signalling.2021; 83: 109983.     CrossRef
  • The MAMs Structure and Its Role in Cell Death
    Nan Wang, Chong Wang, Hongyang Zhao, Yichun He, Beiwu Lan, Liankun Sun, Yufei Gao
    Cells.2021; 10(3): 657.     CrossRef
  • Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications
    Xiuxiu Wang, Xiaoyue Shen, Yuting Yan, Hongmin Li
    Bioscience Reports.2021;[Epub]     CrossRef
  • Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease
    Ishita Tandon, Kyle P. Quinn, Kartik Balachandran
    Frontiers in Cardiovascular Medicine.2021;[Epub]     CrossRef
  • Vascular Calcification—New Insights into Its Mechanism
    Sun Joo Lee, In-Kyu Lee, Jae-Han Jeon
    International Journal of Molecular Sciences.2020; 21(8): 2685.     CrossRef
  • Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism
    Nabil A Rashdan, Alisia M Sim, Lin Cui, Kanchan Phadwal, Fiona L Roberts, Roderick Carter, Derya D Ozdemir, Peter Hohenstein, John Hung, Jakub Kaczynski, David E Newby, Andrew H Baker, Gerard Karsenty, Nicholas M Morton, Vicky E MacRae
    Journal of Bone and Mineral Research.2020; 35(2): 357.     CrossRef
  • The role of mitochondria in vascular calcification
    Pengbo Wang, Naijin Zhang, Boquan Wu, Shaojun Wu, Ying Zhang, Yingxian Sun
    Journal of Translational Internal Medicine.2020; 8(2): 80.     CrossRef
  • Cerebral blood flow in dystonia due to pantothenate kinase-associated neurodegeneration
    Peter Stoeter, Pedro Roa-Sanchez, Cesar F Gonzalez, Herwin Speckter, Jairo Oviedo, Pamela Bido
    The Neuroradiology Journal.2020; 33(6): 479.     CrossRef
  • PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming
    Wen-Qi Ma, Xue-Jiao Sun, Yi Zhu, Nai-Feng Liu
    Cell Death & Disease.2020;[Epub]     CrossRef
  • Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis
    Wen-Qi Ma, Xue-Jiao Sun, Ying Wang, Yi Zhu, Xi-Qiong Han, Nai-Feng Liu
    Molecular and Cellular Endocrinology.2019; 479: 39.     CrossRef
  • Salusin-β Promotes Vascular Calcification via Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation
    Haijian Sun, Feng Zhang, Yu Xu, Shuo Sun, Huiping Wang, Qiong Du, Chenxin Gu, Stephen M. Black, Ying Han, Haiyang Tang
    Antioxidants & Redox Signaling.2019; 31(18): 1352.     CrossRef
  • Fibroblast Growth Factor 21 (FGF21) Promotes Formation of Aerobic Myofibers via the FGF21‐SIRT1‐AMPK‐PGC1α Pathway
    Xinyi Liu, Yongliang Wang, Liming Hou, Yuanzhu Xiong, Shuhong Zhao
    Journal of Cellular Physiology.2017; 232(7): 1893.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
Close layer
Editorial
Thyroid
Differentiated Thyroid Cancer in Asians
Bo Hyun Kim
Endocrinol Metab. 2016;31(1):62-63.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.62
  • 3,711 View
  • 32 Download
PDFPubReader   
Close layer
Original Articles
Clinical Study
Serum γ-Glutamyl Transferase Is Inversely Associated with Bone Mineral Density Independently of Alcohol Consumption
Han Seok Choi, Kwang Joon Kim, Yumie Rhee, Sung-Kil Lim
Endocrinol Metab. 2016;31(1):64-71.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.64
  • 4,808 View
  • 38 Download
  • 10 Web of Science
  • 9 Crossref
AbstractAbstract PDFPubReader   
Background

γ-Glutamyl transferase (GGT) is a well-known marker of chronic alcohol consumption or hepatobiliary diseases. A number of studies have demonstrated that serum levels of GGT are independently associated with cardiovascular and metabolic disorders. The purpose of this study was to test if serum GGT levels are associated with bone mineral density (BMD) in Korean adults.

Methods

A total of 462 subjects (289 men and 173 women), who visited Severance Hospital for medical checkup, were included in this study. BMD was measured using dual energy X-ray absorptiometry. Cross-sectional association between serum GGT and BMD was evaluated.

Results

As serum GGT levels increased from the lowest tertile (tertile 1) to the highest tertile (tertile 3), BMD decreased after adjusting for confounders such as age, body mass index, amount of alcohol consumed, smoking, regular exercise, postmenopausal state (in women), hypertension, diabetes mellitus, and hypercholesterolemia. A multiple linear regression analysis showed a negative association between log-transformed serum GGT levels and BMD. In a multiple logistic regression analysis, tertile 3 of serum GGT level was associated with an increased risk for low bone mass compared to tertile 1 (odds ratio, 2.271; 95% confidence interval, 1.340 to 3.850; P=0.002).

Conclusion

Serum GGT level was inversely associated with BMD in Korean adults. Further study is necessary to fully elucidate the mechanism of the inverse relationship.

Citations

Citations to this article as recorded by  
  • Association of gamma-glutamyl transferase variability with risk of osteoporotic fractures: A nationwide cohort study
    Dongyeop Kim, Jee Hyun Kim, Heajung Lee, Iksun Hong, Yoonkyung Chang, Tae-Jin Song, Mohamed El-Sayed Abdel-Wanis
    PLOS ONE.2023; 18(6): e0277452.     CrossRef
  • Gamma-glutamyl-transferase is associated with incident hip fractures in women and men ≥ 50 years: a large population-based cohort study
    W. Brozek, H. Ulmer, A. Pompella, G. Nagel, A. Leiherer, O. Preyer, H. Concin, E. Zitt
    Osteoporosis International.2022; 33(6): 1295.     CrossRef
  • Elevated gamma-glutamyl transpeptidase level is associated with an increased risk of hip fracture in postmenopausal women
    Kyoung Jin Kim, Namki Hong, Min Heui Yu, Seunghyun Lee, Sungjae Shin, Sin Gon Kim, Yumie Rhee
    Scientific Reports.2022;[Epub]     CrossRef
  • Elevated serum γ-glutamyl transferase is associated with low muscle function in adults independent of muscle mass
    Seunghyun Lee, Dawon Song, Sungjae Shin, Namki Hong, Yumie Rhee
    Nutrition.2022; 103-104: 111813.     CrossRef
  • A fluorine-18 labeled radiotracer for PET imaging of γ-glutamyltranspeptidase in living subjects
    Dingyao Gao, Yinxing Miao, Siqin Ye, Chunmei Lu, Gaochao Lv, Ke Li, Chunjing Yu, Jianguo Lin, Ling Qiu
    RSC Advances.2021; 11(31): 18738.     CrossRef
  • The dark side of gamma-glutamyltransferase (GGT): Pathogenic effects of an ‘antioxidant’ enzyme
    Alessandro Corti, Eugenia Belcastro, Silvia Dominici, Emilia Maellaro, Alfonso Pompella
    Free Radical Biology and Medicine.2020; 160: 807.     CrossRef
  • Clinical and body composition predictors of bone turnover and mineral content in obese postmenopausal women
    Rim Cherif, Feten Mahjoub, Hela Sahli, Elhem Cheour, Mohsen Sakly, Nebil Attia
    Clinical Rheumatology.2019; 38(3): 739.     CrossRef
  • Association between liver enzymes and bone mineral density in Koreans: a cross-sectional study
    Ho Jeong Do, Joon-Shik Shin, Jinho Lee, Yoon Jae Lee, Me-riong Kim, Dongwoo Nam, Eun-Jung Kim, Yeoncheol Park, Kristin Suhr, In-Hyuk Ha
    BMC Musculoskeletal Disorders.2018;[Epub]     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
Close layer
Clinical Study
Well-Differentiated Thyroid Cancer: The Philippine General Hospital Experience
Tom Edward N. Lo, Abigail T. Uy, Patricia Deanna D. Maningat
Endocrinol Metab. 2016;31(1):72-79.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.72
  • 4,885 View
  • 56 Download
  • 21 Web of Science
  • 14 Crossref
AbstractAbstract PDFPubReader   
Background

Well-differentiated thyroid cancer (WDTC) is the most common form of thyroid malignancy. While it is typically associated with good prognosis, it may exhibit higher recurrence and mortality rates in selected groups, particularly Filipinos. This paper aims to describe the experience of a Philippine Hospital in managing patients with differentiated thyroid cancer.

Methods

We performed a retrospective cohort study of 723 patients with WDTC (649 papillary and 79 follicular), evaluating the clinicopathologic profiles, ultrasound features, management received, tumor recurrence, and eventual outcome over a mean follow-up period of 5 years.

Results

The mean age at diagnosis was 44±13 years (range, 18 to 82), with a majority of cases occurring in the younger age group (<45 years). Most tumors were between 2 and 4 cm in size. The majority of papillary thyroid cancers (PTCs, 63.2%) and follicular thyroid cancers (FTCs, 54.4%) initially presented as stage 1, with a greater proportion of FTC cases (12.7% vs. 3.7%) presenting with distant metastases. Nodal metastases at presentation were more frequent among patients with PTC (29.9% vs. 7.6%). A majority of cases were treated by complete thyroidectomy, followed by radioactive iodine therapy and thyroid stimulating hormone suppression, resulting in a disease-free state. Excluding patients with distant metastases at presentation, the recurrence rates for papillary and FTC were 30.1% and 18.8%, respectively.

Conclusion

Overall, PTC among Filipinos was associated with a more aggressive and recurrent behavior. FTC among Filipinos appeared to behave similarly with other racial groups.

Citations

Citations to this article as recorded by  
  • Clinical, Histopathological, and Radiological Profile of Patients Presenting With Thyroid Malignancies Among the Kerala Population
    Chandralal Prasannakumar Girijakumari , Arshad Koroth , Muhamed Fawas Abdul Rasheed , Azif Ali Usman, Shiraz Basheer, Mohamed Rasween Kareem
    Cureus.2024;[Epub]     CrossRef
  • Behaviour and epidemiology of differentiated thyroid cancer among filipinos in and outside the Philippines: Comparison between Qatar, Canada and Philippines
    Mohamed Said Ghali, Walid El Ansari, Abdelrahman Abdelaal, Mohamed S. Al Hassan
    Annals of Medicine and Surgery.2022; 81: 104202.     CrossRef
  • Discrimination of malignant from benign thyroid lesions through neural networks using FTIR signals obtained from tissues
    Abegail Santillan, Rock Christian Tomas, Ruth Bangaoil, Rolando Lopez, Maria Honolina Gomez, Allan Fellizar, Antonio Lim, Lorenzo Abanilla, Maria Cristina Ramos, Leonardo Guevarra, Pia Marie Albano
    Analytical and Bioanalytical Chemistry.2021; 413(8): 2163.     CrossRef
  • Decline in radioiodine use but not total thyroidectomy in thyroid cancer patients treated in the United Arab Emirates - A retrospective study
    Malik Azhar, Faisal Aziz, Salama Almuhairi, Mohammad Alfelasi, Ali Elhouni, Rizwan Syed, Humaid O. Al-Shamsi, Khaled M. Aldahmani
    Annals of Medicine and Surgery.2021; 64: 102203.     CrossRef
  • Clinical predictors of I-131 therapy failure in differentiated thyroid cancer by machine learning: A single-center experience
    David J. Lubin, Caleb Tsetse, Mohammad S. Khorasani, Massoud Allahyari, Mary McGrath
    World Journal of Nuclear Medicine.2021; 20(03): 253.     CrossRef
  • Differential Expression of Non-Coding RNA Signatures in Thyroid Cancer between Two Ethnic Groups
    Kristiana Rood, Khodeza Begum, Hanmin Wang, Yan C. Wangworawat, Ryan Davis, Celina R. Yamauchi, Mia C. Perez, Alfred A. Simental, Ria T. Laxa, Charles Wang, Sourav Roy, Salma Khan
    Current Oncology.2021; 28(5): 3610.     CrossRef
  • The Role of postoperative external beam radiotherapy for differentiated thyroid carcinoma: A Systematic review and meta‐analysis
    Luisa E. Jacomina, JC Kennetth M. Jacinto, Lester Bryan A. Co, Kelvin Ken L. Yu, Ryan Anthony F. Agas, Jayson L. Co, Michael Benedict A. Mejia
    Head & Neck.2020; 42(8): 2181.     CrossRef
  • Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management
    Giorgio Grani, Livia Lamartina, Cosimo Durante, Sebastiano Filetti, David S Cooper
    The Lancet Diabetes & Endocrinology.2018; 6(6): 500.     CrossRef
  • Poorly Differentiated Thyroid Carcinoma: 10-Year Experience in a Southeast Asian Population
    Marc Gregory Yu, Jonathan Rivera, Cecilia Jimeno
    Endocrinology and Metabolism.2017; 32(2): 288.     CrossRef
  • Thyroid cancer mortality is higher in Filipinos in the United States: An analysis using national mortality records from 2003 through 2012
    Michelle‐Linh T. Nguyen, Jiaqi Hu, Katherine G. Hastings, Eric J. Daza, Mark R. Cullen, Lisa A. Orloff, Latha P. Palaniappan
    Cancer.2017; 123(24): 4860.     CrossRef
  • Thyroid Fine-Needle Aspiration Practice in the Philippines
    Agustina D. Abelardo
    Journal of Pathology and Translational Medicine.2017; 51(6): 555.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • THYROID CANCER: A RETROSPECTIVE ANALYSIS
    Javan N G, Jitendra N, Ibomcha Singh K H, Phungreikan N, Sanatomba Singh Y, Wormi Sharon
    Journal of Evolution of Medical and Dental Sciences.2016; 5(40): 2456.     CrossRef
  • Differentiated Thyroid Cancer in Asians
    Bo Hyun Kim
    Endocrinology and Metabolism.2016; 31(1): 62.     CrossRef
Close layer
Clinical Study
Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients
Ju-Young Hong, Keun-Young Park, Byung-Joon Kim, Won-Min Hwang, Dong-Ho Kim, Dong-Mee Lim
Endocrinol Metab. 2016;31(1):80-85.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.80
  • 5,851 View
  • 51 Download
  • 27 Web of Science
  • 23 Crossref
AbstractAbstract PDFPubReader   
Background

Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients.

Methods

For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment.

Results

After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively).

Conclusion

Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio.

Citations

Citations to this article as recorded by  
  • Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics
    Christiana Eleojo Aruwa, Saheed Sabiu
    Heliyon.2024; 10(1): e23114.     CrossRef
  • Separate and combined effects of empagliflozin and semaglutide on vascular function: A 32‐week randomized trial
    Liv Vernstrøm, Søren Gullaksen, Steffen S. Sørensen, Kristian L. Funck, Esben Laugesen, Per L. Poulsen
    Diabetes, Obesity and Metabolism.2024; 26(5): 1624.     CrossRef
  • Diabetic Sarcopenia. A proposed muscle screening protocol in people with diabetes
    Daniel de Luis Román, Juana Carretero Gómez, José Manuel García-Almeida, Fernando Garrachón Vallo, German Guzmán Rolo, Juan José López Gómez, Francisco José Tarazona-Santabalbina, Alejandro Sanz-Paris
    Reviews in Endocrine and Metabolic Disorders.2024; 25(4): 651.     CrossRef
  • The Current Landscape of Pharmacotherapies for Sarcopenia
    Gulistan Bahat, Serdar Ozkok
    Drugs & Aging.2024; 41(2): 83.     CrossRef
  • Role of endogenous GLP‐1 on arterial stiffness and renal haemodynamics following bariatric surgery
    D. Moriconi, R. M. Bruno, E. Rebelos, S. Armenia, S. Baldi, L. Bonvicini, S. Taddei, M. Nannipieri
    European Journal of Clinical Investigation.2024;[Epub]     CrossRef
  • Vascular Aging: Assessment and Intervention
    Ao Li, Jinhua Yan, Ya Zhao, Zhenping Yu, Shane Tian, Abdul Haseeb Khan, Yuanzheng Zhu, Andong Wu, Cuntai Zhang, Xiao-Li Tian
    Clinical Interventions in Aging.2023; Volume 18: 1373.     CrossRef
  • The Effect of Additional Treatment with Empagliflozin or Semaglutide on Endothelial Function and Arterial Stiffness in Subjects with Type 1 Diabetes Mellitus—ENDIS Study
    Maja Preložnik Navodnik, Andrej Janež, Ivan Žuran
    Pharmaceutics.2023; 15(7): 1945.     CrossRef
  • Sarcopenia as a Little-Recognized Comorbidity of Type II Diabetes Mellitus: A Review of the Diagnosis and Treatment
    Christian Salom Vendrell, Elisa García Tercero, Juan Bautista Moro Hernández, Bernardo Abel Cedeno-Veloz
    Nutrients.2023; 15(19): 4149.     CrossRef
  • Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study
    Sara Volpe, Giuseppe Lisco, Margherita Fanelli, Davide Racaniello, Valentina Colaianni, Valentina Lavarra, Domenico Triggiani, Lucilla Crudele, Vincenzo Triggiani, Carlo Sabbà, Giovanni De Pergola, Giuseppina Piazzolla
    Frontiers in Endocrinology.2023;[Epub]     CrossRef
  • GLP1 Receptor Agonists—Effects beyond Obesity and Diabetes
    Sydney S. Wilbon, Mikhail G. Kolonin
    Cells.2023; 13(1): 65.     CrossRef
  • The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study
    Yoshinori Ozeki, Takayuki Masaki, Akari Kamata, Shotaro Miyamoto, Yuichi Yoshida, Mitsuhiro Okamoto, Koro Gotoh, Hirotaka Shibata
    Medicines.2022; 9(9): 47.     CrossRef
  • Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with Glp-1 Receptor Agonists: A Multidisciplinary Expert Consensus
    Juan J. Gorgojo-Martínez, Pedro Mezquita-Raya, Juana Carretero-Gómez, Almudena Castro, Ana Cebrián-Cuenca, Alejandra de Torres-Sánchez, María Dolores García-de-Lucas, Julio Núñez, Juan Carlos Obaya, María José Soler, José Luis Górriz, Miguel Ángel Rubio-H
    Journal of Clinical Medicine.2022; 12(1): 145.     CrossRef
  • The Impact of Glucose-Lowering Drugs on Sarcopenia in Type 2 Diabetes: Current Evidence and Underlying Mechanisms
    Elena Massimino, Anna Izzo, Gabriele Riccardi, Giuseppe Della Pepa
    Cells.2021; 10(8): 1958.     CrossRef
  • Anti‐diabetic drugs and sarcopenia: emerging links, mechanistic insights, and clinical implications
    Xueli Zhang, Yi Zhao, Shuobing Chen, Hua Shao
    Journal of Cachexia, Sarcopenia and Muscle.2021; 12(6): 1368.     CrossRef
  • Effect of glycemic control on markers of subclinical atherosclerosis in patients with type 2 diabetes mellitus: A review
    Sofia Antoniou, Katerina K K Naka, Marios Papadakis, Aris Bechlioulis, Agathocles Tsatsoulis, Lampros K Michalis, Stelios Tigas
    World Journal of Diabetes.2021; 12(11): 1856.     CrossRef
  • A Review of the Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Lean Body Mass in Humans
    Jack Alistair Sargeant, Joseph Henson, James Adam King, Thomas Yates, Kamlesh Khunti, Melanie Jane Davies
    Endocrinology and Metabolism.2019; 34(3): 247.     CrossRef
  • The effect of dulaglutide on body composition in type 2 diabetes mellitus patients on hemodialysis
    Takahiro Yajima, Kumiko Yajima, Hiroshi Takahashi, Keigo Yasuda
    Journal of Diabetes and its Complications.2018; 32(8): 759.     CrossRef
  • Effects of Newer Antidiabetic Drugs on Endothelial Function and Arterial Stiffness: A Systematic Review and Meta-Analysis
    Konstantinos Batzias, Alexios S. Antonopoulos, Evangelos Oikonomou, Gerasimos Siasos, Evanthia Bletsa, Panagiota K. Stampouloglou, Chara-Vasiliki Mistakidi, Marina Noutsou, Niki Katsiki, Periklis Karopoulos, Georgios Charalambous, Anastasia Thanopoulou, N
    Journal of Diabetes Research.2018; 2018: 1.     CrossRef
  • Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes
    N. González, Z. Moreno-Villegas, A. González-Bris, J. Egido, Ó. Lorenzo
    Cardiovascular Diabetology.2017;[Epub]     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response
    Dong-Mee Lim, Keun-Young Park, Won-Min Hwang, Ju-Young Kim, Byung-Joon Kim
    Experimental and Therapeutic Medicine.2017; 13(5): 2558.     CrossRef
  • Treatment Strategy for Type 2 Diabetes with Obesity: Focus on Glucagon-like Peptide-1 Receptor Agonists
    Qiuhe Ji
    Clinical Therapeutics.2017; 39(6): 1244.     CrossRef
  • Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications
    Almudena Gómez-Hernández, Nuria Beneit, Sabela Díaz-Castroverde, Óscar Escribano
    International Journal of Endocrinology.2016; 2016: 1.     CrossRef
Close layer
Clinical Study
The Relationship between 10-Year Cardiovascular Risk Calculated Using the Pooled Cohort Equation and the Severity of Non-Alcoholic Fatty Liver Disease
Jeong In Lee, Min Chul Kim, Byung Sub Moon, Young Seok Song, Eun Na Han, Hyo Sun Lee, Yoonjeong Son, Jihyun Kim, Eun Jin Han, Hye-Jeong Park, Se Eun Park, Cheol-Young Park, Won-Young Lee, Ki-Won Oh, Sung-Woo Park, Eun-Jung Rhee
Endocrinol Metab. 2016;31(1):86-92.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.86
  • 5,732 View
  • 43 Download
  • 22 Web of Science
  • 24 Crossref
AbstractAbstract PDFPubReader   
Background

We investigated the association between the severity of non-alcoholic fatty liver disease (NAFLD) and the estimated 10-year risk of cardiovascular disease (CVD) calculated by Pooled Cohort Equation (PCE) and Framingham risk score (FRS).

Methods

A total of 15,913 participants (mean age, 46.3 years) in a health screening program were selected for analysis. The presence and severity of fatty liver was assessed by abdominal ultrasonogram. Subjects who drank alcohol more than three times a week were excluded from the study.

Results

Among the participants, 57.6% had no NAFLD, 35.4% had grade I, 6.5% had grade II, and 0.5% had grade III NAFLD. Mean estimated 10-year CVD risk was 2.59%, 3.93%, 4.68%, and 5.23% calculated using the PCE (P for trend <0.01) and 4.55%, 6.39%, 7.33%, and 7.13% calculated using FRS, according to NAFLD severity from none to severe (P for trend <0.01). The odds ratio for ≥7.5% estimated CVD risk calculated using the PCE showed a higher correlation with increasing severity of NAFLD even after adjustment for conventional CVD risk factors (1.52, 2.56, 3.35 vs. the no NAFLD group as a reference, P<0.01) compared with calculated risk using FRS (1.65, 1.62, 1.72 vs. no NAFLD group as a reference, P<0.01).

Conclusion

In our study of apparently healthy Korean adults, increasing severity of NAFLD showed a higher correlation with estimated 10-year CVD risk when calculated using the PCE than when calculated using FRS.

Citations

Citations to this article as recorded by  
  • Insulin Resistance, Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Clinical and Experimental Perspective
    Inha Jung, Dae-Jeong Koo, Won-Young Lee
    Diabetes & Metabolism Journal.2024; 48(3): 327.     CrossRef
  • Nonalcoholic Fatty Liver Disease Increases Cardiovascular Risk in Inflammatory Bowel Diseases
    Dana Kablawi, Faisal Aljohani, Chiara Saroli Palumbo, Sophie Restellini, Alain Bitton, Gary Wild, Waqqas Afif, Peter L Lakatos, Talat Bessissow, Giada Sebastiani
    Crohn's & Colitis 360.2023;[Epub]     CrossRef
  • Low Relative Handgrip Strength Is Associated with a High Risk of Non-Alcoholic Fatty Liver Disease in Italian Adults: A Retrospective Cohort Study
    Samantha Maurotti, Roberta Pujia, Elisa Mazza, Maria Francesca Pileggi, Franco Arturi, Maria Grazia Tarsitano, Tiziana Montalcini, Arturo Pujia, Yvelise Ferro
    Applied Sciences.2023; 13(22): 12489.     CrossRef
  • Fatty Liver Disease: Diagnosis and Stratification
    Yedidya Saiman, Andres Duarte-Rojo, Mary E. Rinella
    Annual Review of Medicine.2022; 73(1): 529.     CrossRef
  • “Dangerous liaisons: NAFLD and liver fibrosis increase cardiovascular risk in HIV”
    Adriana Cervo, Giada Sebastiani, Jovana Milic, Thomas Krahn, Sergio Mazzola, Salvatore Petta, Antonio Cascio, Giovanni Guaraldi, Giovanni Mazzola
    HIV Medicine.2022; 23(8): 911.     CrossRef
  • Value of the triglyceride glucose index combined with body mass index in identifying non-alcoholic fatty liver disease in patients with type 2 diabetes
    Nong Li, Huiwen Tan, Aixia Xie, Cheng Li, Xuan Fu, Weiting Xang, Amina Kirim, Xuefang Huang
    BMC Endocrine Disorders.2022;[Epub]     CrossRef
  • The Relation Between Non-alcoholic Fatty Liver Disease and the Risk of Coronary Heart Disease
    Seyed Moayed Alavian, Hosein Zadi
    Multidisciplinary Cardiovascular Annals.2022;[Epub]     CrossRef
  • Risk factors for cardiovascular disease among individuals with hepatic steatosis
    Julia Karády, Maros Ferencik, Thomas Mayrhofer, Nandini M. Meyersohn, Daniel O. Bittner, Pedro V. Staziaki, Balint Szilveszter, Travis R. Hallett, Michael T. Lu, Stefan B. Puchner, Tracey G. Simon, Borek Foldyna, Geoffrey S. Ginsburg, Robert W. McGarrah,
    Hepatology Communications.2022; 6(12): 3406.     CrossRef
  • Triglyceride Glucose Index and Related Parameters (Triglyceride Glucose-Body Mass Index and Triglyceride Glucose-Waist Circumference) Identify Nonalcoholic Fatty Liver and Liver Fibrosis in Individuals with Overweight/Obesity
    Mohammad E. Khamseh, Mojtaba Malek, Rowshanak Abbasi, Hoda Taheri, Maryam Lahouti, Fariba Alaei-Shahmiri
    Metabolic Syndrome and Related Disorders.2021; 19(3): 167.     CrossRef
  • Interplay between non‐alcoholic fatty liver disease and cardiovascular risk in an asymptomatic general population
    Grazia Pennisi, Vito Di Marco, Carola Buscemi, Giovanni Mazzola, Cristiana Randazzo, Federica Spatola, Antonio Craxì, Silvio Buscemi, Salvatore Petta
    Journal of Gastroenterology and Hepatology.2021; 36(9): 2389.     CrossRef
  • Non-Laboratory-Based Simple Screening Model for Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Developed Using Multi-Center Cohorts
    Jiwon Kim, Minyoung Lee, Soo Yeon Kim, Ji-Hye Kim, Ji Sun Nam, Sung Wan Chun, Se Eun Park, Kwang Joon Kim, Yong-ho Lee, Joo Young Nam, Eun Seok Kang
    Endocrinology and Metabolism.2021; 36(4): 823.     CrossRef
  • Coronary Artery Disease is More Severe in Patients with Non-Alcoholic Steatohepatitis than Fatty Liver
    Toshihiro Niikura, Kento Imajo, Anna Ozaki, Takashi Kobayashi, Michihiro Iwaki, Yasushi Honda, Takaomi Kessoku, Yuji Ogawa, Masato Yoneda, Hiroyuki Kirikoshi, Satoru Saito, Atsushi Nakajima
    Diagnostics.2020; 10(3): 129.     CrossRef
  • Cardiovascular Disease in Nonalcoholic Steatohepatitis: Screening and Management
    Hersh Shroff, Lisa B. VanWagner
    Current Hepatology Reports.2020; 19(3): 315.     CrossRef
  • Triglyceride Glucose Index Is Superior to the Homeostasis Model Assessment of Insulin Resistance for Predicting Nonalcoholic Fatty Liver Disease in Korean Adults
    Sang Bae Lee, Min Kyung Kim, Shinae Kang, Kahui Park, Jung Hye Kim, Su Jung Baik, Ji Sun Nam, Chul Woo Ahn, Jong Suk Park
    Endocrinology and Metabolism.2019; 34(2): 179.     CrossRef
  • Mortality Risk Detected by Atherosclerotic Cardiovascular Disease Score in Patients With Nonalcoholic Fatty Liver Disease
    Pegah Golabi, Natsu Fukui, James Paik, Mehmet Sayiner, Alita Mishra, Zobair M. Younossi
    Hepatology Communications.2019; 3(8): 1050.     CrossRef
  • Lower hand grip strength in older adults with non-alcoholic fatty liver disease: a nationwide population-based study
    Beom-Jun Kim, Seong Hee Ahn, Seung Hun Lee, Seongbin Hong, Mark W. Hamrick, Carlos M. Isales, Jung-Min Koh
    Aging.2019; 11(13): 4547.     CrossRef
  • Implication of Nonalcoholic Fatty Liver Disease, Metabolic Syndrome, and Subclinical Inflammation on Mild Renal Insufficiency
    Ga Eun Nam, Soon Young Hwang, Hye Soo Chung, Ju Hee Choi, Hyun Jung Lee, Nam Hoon Kim, Hye Jin Yoo, Ji-A Seo, Sin Gon Kim, Nan Hee Kim, Sei Hyun Baik, Kyung Mook Choi
    International Journal of Endocrinology.2018; 2018: 1.     CrossRef
  • Implication of liver enzymes on incident cardiovascular diseases and mortality: A nationwide population-based cohort study
    Kyung Mook Choi, Kyungdo Han, Sanghyun Park, Hye Soo Chung, Nam Hoon Kim, Hye Jin Yoo, Ji-A Seo, Sin Gon Kim, Nan Hee Kim, Sei Hyun Baik, Yong Gyu Park, Seon Mee Kim
    Scientific Reports.2018;[Epub]     CrossRef
  • Controlled Attenuation Parameter as a Noninvasive Method to Detect and Quantify Hepatic Steatosis in Chronic Liver Disease: What Is the Clinical Relevance
    Mariana Verdelho Machado
    GE - Portuguese Journal of Gastroenterology.2017; 24(4): 157.     CrossRef
  • Effect of statin on hepatocellular carcinoma in patients with type 2 diabetes: A nationwide nested case‐control study
    Gyuri Kim, Suk‐Yong Jang, Eugene Han, Yong‐ho Lee, Se‐young Park, Chung Mo Nam, Eun Seok Kang
    International Journal of Cancer.2017; 140(4): 798.     CrossRef
  • Clinical Characteristics of Non-Alcoholic Fatty Liver Disease Based on Analyses from the Kangbuk Samsung Health Study
    Eun-Jung Rhee
    The Journal of Korean Diabetes.2017; 18(2): 81.     CrossRef
  • Increased risk for development of coronary artery calcification in subjects with non-alcoholic fatty liver disease and systemic inflammation
    Jihyun Kim, Da Young Lee, Se Eun Park, Cheol-Young Park, Won-Young Lee, Ki-Won Oh, Sung-Woo Park, Eun-Jung Rhee, Susanne Kaser
    PLOS ONE.2017; 12(7): e0180118.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Non-Alcoholic Fatty Liver Disease: The Emerging Burden in Cardiometabolic and Renal Diseases
    Eugene Han, Yong-ho Lee
    Diabetes & Metabolism Journal.2017; 41(6): 430.     CrossRef
Close layer
Clinical Study
High Levels of Serum DPP-4 Activity Are Associated with Low Bone Mineral Density in Obese Postmenopausal Women
Sang-Wook Kim, Eun-Hee Cho
Endocrinol Metab. 2016;31(1):93-99.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.93
  • 4,087 View
  • 39 Download
  • 12 Web of Science
  • 14 Crossref
AbstractAbstract PDFPubReader   
Background

Dipeptidyl peptidase 4/CD26 (DPP-4) is a widely expressed cell surface serine protease. DPP-4 inhibitors, one of common anti-diabetic agents play a protective role in bone metabolism in recent studies. A soluble form of DPP-4 is found in serum, and exhibits DPP-4 enzymatic activity. However, the physiological role of serum or soluble DPP-4 and its relationship with DPP-4 enzymatic function remain poorly understood. The aims of current study were to determine the association between serum DPP-4 activity and bone mineral density (BMD) in postmenopausal women.

Methods

We recruited data and serum samples from 124 consecutive healthy postmenopausal women aged >50 years. We divided study subjects into obese (body mass index [BMI] ≥25 kg/m2) and non-obese (BMI <25 kg/m2) postmenopausal women and examined the correlation between serum DPP-4 activity and clinical variables in each groups.

Results

A total of 124 postmenopausal women was enrolled, with a mean age of 59.9±7.1 years. The mean BMI of the study patients was 24.4±2.8 kg/m2. Regarding bone turnover markers, serum DPP-4 activity was positively correlated with serum calcium concentrations, intact parathyroid hormone, and serum C-telopeptide levels in all of the study subjects. However, there was no association between serum DPP-4 activity and BMD in the spine or femoral neck in all of the study subjects. Serum DPP-4 activity was negatively correlated (R=−0.288, P=0.038) with BMD of the spine in obese postmenopausal women.

Conclusion

This study demonstrated for the first time that serum soluble DPP-4 activity was negatively correlated with BMD in obese postmenopausal women.

Citations

Citations to this article as recorded by  
  • A novel mechanism of Vildagliptin in regulating bone metabolism and mitigating osteoporosis
    Jinwen He, Dacheng Zhao, Bo Peng, Xingwen Wang, Shenghong Wang, Xiaobing Zhao, Peng Xu, Bin Geng, Yayi Xia
    International Immunopharmacology.2024; 130: 111671.     CrossRef
  • The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review
    L. M. Pechmann, F. I. Pinheiro, V. F. C. Andrade, C. A. Moreira
    Diabetology & Metabolic Syndrome.2024;[Epub]     CrossRef
  • Comparative evaluation of Sodium-glucose co-transporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors influence on bone turnover markers in rats with experimental type 2 diabetes mellitus
    N. V. Timkina, A. V. Simanenkova, T. L. Karonova, T. D. Vlasov, N. Yu. Semenova, А. A. Bairamov, V. A. Timofeeva, A. A. Shimshilashvili, E. V. Shlyakhto
    Osteoporosis and Bone Diseases.2022; 24(4): 27.     CrossRef
  • The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis
    Jiao Li, Xiang Chen, Lingyun Lu, Xijie Yu
    Cytokine & Growth Factor Reviews.2020; 52: 88.     CrossRef
  • Update on: effects of anti-diabetic drugs on bone metabolism
    Guillaume Mabilleau, Béatrice Bouvard
    Expert Review of Endocrinology & Metabolism.2020; 15(6): 415.     CrossRef
  • Soluble Dipeptidyl Peptidase-4 Levels Are Associated with Decreased Renal Function in Patients with Type 2 Diabetes Mellitus
    Eun-Hee Cho, Sang-Wook Kim
    Diabetes & Metabolism Journal.2019; 43(1): 97.     CrossRef
  • Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration
    Qiwen Li, Yunshu Wu, Ning Kang
    Stem Cells International.2018; 2018: 1.     CrossRef
  • Association between Serum Dipeptidyl Peptidase-4 Concentration and Obesity-related Factors in Health Screen Examinees
    Ji Yeon Lee, Byoung Kuk Jang, Min Kyung Song, Hye Soon Kim, Mi-Kyung Kim
    Journal of Obesity & Metabolic Syndrome.2017; 26(3): 188.     CrossRef
  • Association of DPP-4 activity with BMD, body composition, and incident hip fracture: the Cardiovascular Health Study
    L. D. Carbone, P. Bůžková, H. A. Fink, J. A. Robbins, M. Bethel, C. M. Isales, W. D. Hill
    Osteoporosis International.2017; 28(5): 1631.     CrossRef
  • Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration
    Thomas H. Ambrosi, Antonio Scialdone, Antonia Graja, Sabrina Gohlke, Anne-Marie Jank, Carla Bocian, Lena Woelk, Hua Fan, Darren W. Logan, Annette Schürmann, Luis R. Saraiva, Tim J. Schulz
    Cell Stem Cell.2017; 20(6): 771.     CrossRef
  • The emerging role of bone marrow adipose tissue in bone health and dysfunction
    Thomas H. Ambrosi, Tim J. Schulz
    Journal of Molecular Medicine.2017; 95(12): 1291.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Dipeptidyl Peptidase-4 and Adolescent Idiopathic Scoliosis: Expression in Osteoblasts
    Emilie Normand, Anita Franco, Alain Moreau, Valérie Marcil
    Scientific Reports.2017;[Epub]     CrossRef
  • Effect of Dipeptidyl Peptidase-4 Inhibitors on Bone Metabolism and the Possible Underlying Mechanisms
    Yinqiu Yang, Chenhe Zhao, Jing Liang, Mingxiang Yu, Xinhua Qu
    Frontiers in Pharmacology.2017;[Epub]     CrossRef
Close layer
Clinical Study
Low Prevalence of Somatic TERT Promoter Mutations in Classic Papillary Thyroid Carcinoma
Min Ji Jeon, Won Gu Kim, Soyoung Sim, Seonhee Lim, Hyemi Kwon, Tae Yong Kim, Young Kee Shong, Won Bae Kim
Endocrinol Metab. 2016;31(1):100-104.   Published online March 16, 2016
DOI: https://doi.org/10.3803/EnM.2016.31.1.100
  • 4,957 View
  • 35 Download
  • 16 Web of Science
  • 15 Crossref
AbstractAbstract PDFPubReader   
Background

Transcriptional activating mutations of telomerase reverse transcriptase (TERT) are associated with more aggressive thyroid cancer. We evaluated the significance of TERT promoter mutations in Korean patients with classic papillary thyroid cancer (PTC).

Methods

Genomic DNA was isolated from four thyroid cancer cell lines and 35 fresh-frozen PTC tissues. TERT promoter mutations (C228T and C250T) and the BRAF V600E mutation were evaluated by polymerase chain reaction amplification and direct sequencing.

Results

The CC228229TT mutation in the TERT promoter was detected in BCPAP cells and the C250T mutation was found in 8505C cells. No TERT promoter mutation was observed in Cal-62 or ML-1 cells. The C228T mutation was found in only 1 of 35 (2.8%) PTCs and no C250T mutations were detected in any of the study subjects. The BRAF V600E mutation was found in 20 of 35 (57.1%) PTCs. One patient with the C228T TERT mutation also harbored the BRAF V600E mutation and developed a recurrence.

Conclusion

The prevalence of somatic TERT promoter mutations was low in Korean patients with classic PTC. Therefore, the prognostic role of TERT promoter mutations might be limited in this patient cohort.

Citations

Citations to this article as recorded by  
  • Risk Factors for TERT Promoter Mutations with Papillary Thyroid Carcinoma Patients: A Meta-Analysis and Systematic Review
    Jingxin Mao, Xingliang Huang, Mohammad K. Okla, Mostafa A. Abdel-Maksoud, Ayman Mubarak, Zahid Hameed, Razia Noreen, Aqsa Chaudhary, Shakira Ghazanfar, Yixuan Liao, Yasir Hameed, Chen Li, Min Tang
    Computational and Mathematical Methods in Medicine.2022; 2022: 1.     CrossRef
  • Telomerase reverse transcriptase promoter mutations in cancers derived from multiple organ sites among middle eastern population
    Abdul K. Siraj, Rong Bu, Kaleem Iqbal, Sandeep Kumar Parvathareddy, Nabil Siraj, Sarah Siraj, Mark Ranier F. Diaz, Dionne Rae Rala, Allianah D. Benito, Maria Angelita Sabido, Maha Al-Rasheed, Khadija A.S. Al-Obaisi, Wael Al-Haqawi, Ingrid G. Victoria, Waf
    Genomics.2020; 112(2): 1746.     CrossRef
  • Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: a systematic review and meta-analysis
    Jing Yang, Yanping Gong, Shuping Yan, Hui Chen, Siqin Qin, Rixiang Gong
    Endocrine.2020; 67(1): 44.     CrossRef
  • The Combination of RET, BRAF and Demographic Data Identifies Subsets of Patients with Aggressive Papillary Thyroid Cancer
    Jose R. W. Martínez, Sergio Vargas-Salas, Soledad Urra Gamboa, Estefanía Muñoz, José Miguel Domínguez, Augusto León, Nicolás Droppelmann, Antonieta Solar, Mark Zafereo, F. Christopher Holsinger, Hernán E. González
    Hormones and Cancer.2019; 10(2-3): 97.     CrossRef
  • Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma
    Jiangqiao Geng, Yuanhu Liu, Yongli Guo, Huanmin Wang, Jun Tai, Yaqiong Jin, Jie Zhang, Yongbo Yu, Shengcai Wang, Yingluan Song, Xin Ni
    Science China Life Sciences.2019; 62(12): 1563.     CrossRef
  • Human telomerase reverse transcriptase in papillary thyroid cancer: gene expression, effects of silencing and regulation by BET inhibitors in thyroid cancer cells
    Valentina Maggisano, Marilena Celano, Saverio Massimo Lepore, Marialuisa Sponziello, Francesca Rosignolo, Valeria Pecce, Antonella Verrienti, Federica Baldan, Catia Mio, Lorenzo Allegri, Marianna Maranghi, Rosa Falcone, Giuseppe Damante, Diego Russo, Stef
    Endocrine.2019; 63(3): 545.     CrossRef
  • BRAF and RAS Mutational Status in Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features and Invasive Subtype of Encapsulated Follicular Variant of Papillary Thyroid Carcinoma in Korea
    Mijin Kim, Min Ji Jeon, Hye-Seon Oh, Suyeon Park, Tae Yong Kim, Young Kee Shong, Won Bae Kim, Kyunggon Kim, Won Gu Kim, Dong Eun Song
    Thyroid.2018; 28(4): 504.     CrossRef
  • The role of TERT promoter mutations in postoperative and preoperative diagnosis and prognosis in thyroid cancer
    Anqi Jin, Jianhao Xu, Yan Wang
    Medicine.2018; 97(29): e11548.     CrossRef
  • Telomere Maintenance Mechanisms in Cancer
    Tiago Bordeira Gaspar, Ana Sá, José Manuel Lopes, Manuel Sobrinho-Simões, Paula Soares, João Vinagre
    Genes.2018; 9(5): 241.     CrossRef
  • Anti-hTERT siRNA-Loaded Nanoparticles Block the Growth of Anaplastic Thyroid Cancer Xenograft
    Giovanni E. Lombardo, Valentina Maggisano, Marilena Celano, Donato Cosco, Chiara Mignogna, Federica Baldan, Saverio M. Lepore, Lorenzo Allegri, Sonia Moretti, Cosimo Durante, Giuseppe Damante, Massimo Fresta, Diego Russo, Stefania Bulotta, Efisio Puxeddu
    Molecular Cancer Therapeutics.2018; 17(6): 1187.     CrossRef
  • Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells
    Valentina Maggisano, Marilena Celano, Giovanni Enrico Lombardo, Saverio Massimo Lepore, Marialuisa Sponziello, Francesca Rosignolo, Antonella Verrienti, Federica Baldan, Efisio Puxeddu, Cosimo Durante, Sebastiano Filetti, Giuseppe Damante, Diego Russo, St
    Molecular and Cellular Endocrinology.2017; 448: 34.     CrossRef
  • Articles inEndocrinology and Metabolismin 2016
    Won-Young Lee
    Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
  • Telomerase: The Devil Inside
    Mukesh Kumar, Andre Lechel, Çagatay Güneş
    Genes.2016; 7(8): 43.     CrossRef
  • Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications
    Tiantian Liu, Xiaotian Yuan, Dawei Xu
    Genes.2016; 7(7): 38.     CrossRef
  • Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene
    Muhammad Ramlee, Jing Wang, Wei Toh, Shang Li
    Genes.2016; 7(8): 50.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism
TOP