How to Establish Clinical Prediction Models
Yong-ho Lee (Lee Yh), Heejung Bang (Bang H), Dae Jung Kim (Kim DJ)
Endocrinol Metab. 2016;31(1):38-44.   Published online 2016 Mar 16     DOI: https://doi.org/10.3803/EnM.2016.31.1.38
Citations to this article as recorded by Crossref logo
A Risk Score for Predicting the Incidence of Hemorrhage in Critically Ill Neonates: Development and Validation Study
Rozeta Sokou, Daniele Piovani, Aikaterini Konstantinidi, Andreas G. Tsantes, Stavroula Parastatidou, Maria Lampridou, Georgios Ioakeimidis, Antonis Gounaris, Nicoletta Iacovidou, Anastasios G. Kriebardis, Marianna Politou, Petros Kopterides, Stefanos Bono
Thrombosis and Haemostasis.2021; 121(02): 131.     CrossRef
Development and validation of a risk assessment nomogram for venous thromboembolism associated with hospitalized postoperative Chinese breast cancer patients
Jing Li, Wan‐Min Qiang, Yan Wang, Xiao‐Yuan Wang
Journal of Advanced Nursing.2021; 77(1): 473.     CrossRef
The role of behaviour problems in screening for mental ill-health in adults with intellectual disability
F. Westlake, A. Hassiotis, G. Unwin, V. Totsika
The European Journal of Psychiatry.2021; 35(2): 122.     CrossRef
Deep learning model for classifying endometrial lesions
YunZheng Zhang, ZiHao Wang, Jin Zhang, CuiCui Wang, YuShan Wang, Hao Chen, LuHe Shan, JiaNing Huo, JiaHui Gu, Xiaoxin Ma
Journal of Translational Medicine.2021;[Epub]     CrossRef
Exploration and Development of a Simpler Respiratory Distress Observation Scale (modRDOS-4) as a Dyspnea Screening Tool: A Prospective Bedside Study
Ru Xin Wong, Ho Shirlynn, Yen Sin Koh, Stella Goh Seow Lin, Daniel Quah, Qingyuan Zhuang
Palliative Medicine Reports.2021; 2(1): 9.     CrossRef
Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue types
Sarah Denzler, Diem Vuong, Marta Bogowicz, Matea Pavic, Thomas Frauenfelder, Sandra Thierstein, Eric Innocents Eboulet, Britta Maurer, Janine Schniering, Hubert Szymon Gabryś, Isabelle Schmitt-Opitz, Miklos Pless, Robert Foerster, Matthias Guckenberger, S
The British Journal of Radiology.2021; 94(1120): 20200947.     CrossRef
An empirical analysis of dealing with patients who are lost to follow-up when developing prognostic models using a cohort design
Jenna M. Reps, Peter Rijnbeek, Alana Cuthbert, Patrick B. Ryan, Nicole Pratt, Martijn Schuemie
BMC Medical Informatics and Decision Making.2021;[Epub]     CrossRef
Predictive Value of Active Sacroiliitis in MRI for Flare Among Chinese Patients with Axial Spondyloarthritis in Remission
Qing Zheng, Wen Liu, Yu Huang, Zhenyu Gao, Yuanhui Wu, Xiaohong Wang, Meimei Cai, Yan He, Shiju Chen, Bin Wang, Lingyu Liu, Shuqiang Chen, Hongjie Huang, Ling Zheng, Rihui Kang, Xiaohong Zeng, Jing Chen, Huaning Chen, Junmin Chen, Zhibin Li, Guixiu Shi
Rheumatology and Therapy.2021; 8(1): 411.     CrossRef
Development of a model for predicting the 4-year risk of symptomatic knee osteoarthritis in China: a longitudinal cohort study
Limin Wang, Han Lu, Hongbo Chen, Shida Jin, Mengqi Wang, Shaomei Shang
Arthritis Research & Therapy.2021;[Epub]     CrossRef
Digital Communication Biomarkers of Mood and Diagnosis in Borderline Personality Disorder, Bipolar Disorder, and Healthy Control Populations
George Gillett, Niall M. McGowan, Niclas Palmius, Amy C. Bilderbeck, Guy M. Goodwin, Kate E. A. Saunders
Frontiers in Psychiatry.2021;[Epub]     CrossRef
Prediction of Multiple Organ Failure Complicated by Moderately Severe or Severe Acute Pancreatitis Based on Machine Learning: A Multicenter Cohort Study
Fumin Xu, Xiao Chen, Chenwenya Li, Jing Liu, Qiu Qiu, Mi He, Jingjing Xiao, Zhihui Liu, Bingjun Ji, Dongfeng Chen, Kaijun Liu, Mirella Giovarelli
Mediators of Inflammation.2021; 2021: 1.     CrossRef
Prodromal clinical, demographic, and socio-ecological correlates of asthma in adults: a 10-year statewide big data multi-domain analysis
Jennifer N. Fishe, Jiang Bian, Zhaoyi Chen, Hui Hu, Jae Min, Francois Modave, Mattia Prosperi
Journal of Asthma.2020; 57(11): 1155.     CrossRef
Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
Shannon Wongvibulsin, Katherine C. Wu, Scott L. Zeger
BMC Medical Research Methodology.2020;[Epub]     CrossRef
Prognostic models for predicting overall survival in metastatic castration-resistant prostate cancer: a systematic review
M. Pinart, F. Kunath, V. Lieb, I. Tsaur, B. Wullich, Stefanie Schmidt
World Journal of Urology.2020; 38(3): 613.     CrossRef
Peripheral Nerve Field Stimulation for Chronic Back Pain: Therapy Outcome Predictive Factors
Eric‐Jan Gorp, Sam Eldabe, Konstantin V. Slavin, Philippe Rigoard, Stefaan Goossens, Dorothee Mielke, Giancarlo Barolat, Christ Declerck, Chris Gilmore, Ismaïl Gültuna, Kris C.P. Vissers, Jennifer Tinsley, Rudolf Likar, Pierre‐Philippe Luyet
Pain Practice.2020; 20(5): 522.     CrossRef
Biomarker Score in Risk Prediction: Beyond Scientific Evidence and Statistical Performance
Heejung Bang
Diabetes & Metabolism Journal.2020; 44(2): 245.     CrossRef
Variable selection strategies and its importance in clinical prediction modelling
Mohammad Ziaul Islam Chowdhury, Tanvir C Turin
Family Medicine and Community Health.2020; 8(1): e000262.     CrossRef
Reply to the Letter to the Editor: Derivation and Internal Validation of a Clinical Prediction Tool to Predict Nonalcoholic Fatty Liver Disease in Patients With Crohn’s Disease
Scott McHenry, Matthew A Ciorba, Parakkal Deepak
Inflammatory Bowel Diseases.2020; 26(6): e46.     CrossRef
The application of unsupervised deep learning in predictive models using electronic health records
Lei Wang, Liping Tong, Darcy Davis, Tim Arnold, Tina Esposito
BMC Medical Research Methodology.2020;[Epub]     CrossRef
Development and evaluation of an osteoarthritis risk model for integration into primary care health information technology
Jason E. Black, Amanda L. Terry, Daniel J. Lizotte
International Journal of Medical Informatics.2020; 141: 104160.     CrossRef
An Individualized Prediction Model for Long-term Lung Function Trajectory and Risk of COPD in the General Population
Wenjia Chen, Don D. Sin, J. Mark FitzGerald, Abdollah Safari, Amin Adibi, Mohsen Sadatsafavi
Chest.2020; 157(3): 547.     CrossRef
Optimization of the management of pregnant women at high risk of miscarriage and premature birth
Yu. A. Semenov, V. F. Dolgushina, M. G. Moscvicheva, V. S. Chulkov
Rossiiskii vestnik akushera-ginekologa.2020; 20(1): 54.     CrossRef
Developing a triage tool for use in identifying people living with HIV who are at risk for non-retention in HIV care
Merhawi T Gebrezgi, Kristopher P Fennie, Diana M Sheehan, Boubakari Ibrahimou, Sandra G Jones, Petra Brock, Robert A Ladner, Mary Jo Trepka
International Journal of STD & AIDS.2020; 31(3): 244.     CrossRef
The impact of age and comorbidity on the postoperative outcomes after emergency surgical management of complicated intra-abdominal infections
Carmen Payá-Llorente, Elías Martínez-López, Juan Carlos Sebastián-Tomás, Sandra Santarrufina-Martínez, Nicola de’Angelis, Aleix Martínez-Pérez
Scientific Reports.2020;[Epub]     CrossRef
Precision health through prediction modelling: factors to consider before implementing a prediction model in clinical practice
Mohammad Z. I. Chowdhury, Tanvir C. Turin
Journal of Primary Health Care.2020; 12(1): 3.     CrossRef
Demystifying artificial intelligence in pharmacy
Scott D Nelson, Colin G Walsh, Casey A Olsen, Andrew J McLaughlin, Joseph R LeGrand, Nick Schutz, Thomas A Lasko
American Journal of Health-System Pharmacy.2020; 77(19): 1556.     CrossRef
Assessment of Simple Bedside Wound Characteristics for a Prediction Model for Diabetic Foot Ulcer Outcomes
Clara Bender, Simon Lebech Cichosz, Louise Pape-Haugaard, Merete Hartun Jensen, Susan Bermark, Anders Christian Laursen, Ole Hejlesen
Journal of Diabetes Science and Technology.2020; : 193229682094230.     CrossRef
Association does not imply prediction: the accuracy of birthweight in predicting child mortality and anthropometric failure
Akshay Swaminathan, Rockli Kim, S.V. Subramanian
Annals of Epidemiology.2020; 50: 7.     CrossRef
Who's at Risk? A Prognostic Model for Severity Prediction in Pediatric Acute Pancreatitis
Peter R. Farrell, Lindsey Hornung, Peter Farmer, Angelica W. DesPain, Esther Kim, Ryan Pearman, Beemnet Neway, Ashley Serrette, Sona Sehgal, James E. Heubi, Tom K. Lin, Jaimie D. Nathan, David S. Vitale, Maisam Abu-El-Haija
Journal of Pediatric Gastroenterology & Nutrition.2020; 71(4): 536.     CrossRef
Biomarkers of Fabry Nephropathy: Review and Future Perspective
Tina Levstek, Bojan Vujkovac, Katarina Trebusak Podkrajsek
Genes.2020; 11(9): 1091.     CrossRef
Coledocolitiasis y pancreatitis: las dificultades de la predicción
David Benigno Páramo Hernández
Revista Colombiana de Gastroenterología.2020; 35(3): 266.     CrossRef
Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar
Yan Li, Matthew Sperrin, Darren M Ashcroft, Tjeerd Pieter van Staa
BMJ.2020; : m3919.     CrossRef
Prediction of psychosis: model development and internal validation of a personalized risk calculator
Tae Young Lee, Wu Jeong Hwang, Nahrie S. Kim, Inkyung Park, Silvia Kyungjin Lho, Sun-Young Moon, Sanghoon Oh, Junhee Lee, Minah Kim, Choong-Wan Woo, Jun Soo Kwon
Psychological Medicine.2020; : 1.     CrossRef
Outcome prediction with serial neuron-specific enolase and machine learning in anoxic-ischaemic disorders of consciousness
Emily Muller, Jonathan P. Shock, Andreas Bender, Julian Kleeberger, Tobias Högen, Martin Rosenfelder, Bubacarr Bah, Alex Lopez-Rolon
Computers in Biology and Medicine.2019; 107: 145.     CrossRef
Machine learning models to predict disease progression among veterans with hepatitis C virus
Monica A. Konerman, Lauren A. Beste, Tony Van, Boang Liu, Xuefei Zhang, Ji Zhu, Sameer D. Saini, Grace L. Su, Brahmajee K. Nallamothu, George N. Ioannou, Akbar K. Waljee, Davide Bacciu
PLOS ONE.2019; 14(1): e0208141.     CrossRef
A novel risk calculator to predict outcome after surgery for symptomatic spinal metastases; use of a large prospective patient database to personalise surgical management
David Choi, Menelaos Pavlou, Rumana Omar, Mark Arts, Laurent Balabaud, Jacob Maciej Buchowski, Cody Bunger, Chun Kee Chung, Maarten Hubert Coppes, Bart Depreitere, Michael George Fehlings, Norio Kawahara, Chong-Suh Lee, YeeLing Leung, Juan Antonio Martin-
European Journal of Cancer.2019; 107: 28.     CrossRef
Big Data Research in Neuro-Ophthalmology: Promises and Pitfalls
Heather E. Moss, Charlotte E. Joslin, Daniel S. Rubin, Steven Roth
Journal of Neuro-Ophthalmology.2019; 39(4): 480.     CrossRef
Nonalcoholic Fatty Liver Disease in Diabetes. Part I: Epidemiology and Diagnosis
Yong-ho Lee, Yongin Cho, Byung-Wan Lee, Cheol-Young Park, Dae Ho Lee, Bong-Soo Cha, Eun-Jung Rhee
Diabetes & Metabolism Journal.2019; 43(1): 31.     CrossRef
The use of rigorous methods was strongly warranted among prognostic prediction models for obstetric care
Jing Tan, Yana Qi, Chunrong Liu, Yiquan Xiong, Qiao He, Guiting Zhang, Meng Chen, Guolin He, Wen Wang, Xinghui Liu, Xin Sun
Journal of Clinical Epidemiology.2019; 115: 98.     CrossRef
Support Vector Machines and logistic regression to predict temporal artery biopsy outcomes
Edsel Ing, Wanhua Su, Matthias Schonlau, Nurhan Torun
Canadian Journal of Ophthalmology.2019; 54(1): 116.     CrossRef
Identifying a risk score for childhood obesity based on predictors identified in pregnant women and 1-year-old infants: An analysis of the data of the Hokkaido Study on Environment and Children’s Health
Yasuaki Saijo, Yoshiya Ito, Eiji Yoshioka, Yukihiro Sato, Machiko Minatoya, Atsuko Araki, Chihiro Miyashita, Reiko Kishi
Clinical Pediatric Endocrinology.2019; 28(3): 81.     CrossRef
Development and performance evaluation of the Medicines Optimisation Assessment Tool (MOAT): a prognostic model to target hospital pharmacists’ input to prevent medication-related problems
Cathy Geeson, Li Wei, Bryony Dean Franklin
BMJ Quality & Safety.2019; 28(8): 645.     CrossRef
Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures
Robert K. Merrill, Rocco M. Ferrandino, Ryan Hoffman, Gene W. Shaffer, Anthony Ndu
The Journal of Foot and Ankle Surgery.2019; 58(3): 410.     CrossRef
Multidimensional screening for predicting pain problems in adults: a systematic review of screening tools and validation studies
Elke Veirman, Dimitri M. L. Van Ryckeghem, Annick De Paepe, Olivia J. Kirtley, Geert Crombez
PAIN Reports.2019; 4(5): e775.     CrossRef
iHealthcare: Predictive Model Analysis Concerning Big Data Applications for Interactive Healthcare Systems †
Md. Ataur Rahman Bhuiyan, Md. Rifat Ullah, Amit Kumar Das
Applied Sciences.2019; 9(16): 3365.     CrossRef
Development of personalized mobile assistant for chronic disease patients: diabetes mellitus case study
M.V. Kabyshev, S.V. Kovalchuk
Procedia Computer Science.2019; 156: 123.     CrossRef
Validation of childhood asthma predictive tools: A systematic review
Silvia Colicino, Daniel Munblit, Cosetta Minelli, Adnan Custovic, Paul Cullinan
Clinical & Experimental Allergy.2019; 49(4): 410.     CrossRef
Predicting intradialytic hypotension using heart rate variability
Samel Park, Wook-Joon Kim, Nam-Jun Cho, Chi-Young Choi, Nam Hun Heo, Hyo-Wook Gil, Eun Young Lee
Scientific Reports.2019;[Epub]     CrossRef
Predicting treatment response using pharmacy register in migraine
Thomas Folkmann Hansen, Mona Ameri Chalmer, Thilde Marie Haspang, Lisette Kogelman, Jes Olesen
The Journal of Headache and Pain.2019;[Epub]     CrossRef
Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers
Seul Ki Park, Hyeoun-Ae Park, Hee Hwang
Journal of Korean Academy of Nursing.2019; 49(5): 575.     CrossRef
Characteristics and outcome of acute heart failure patients according to the severity of peripheral oedema
Ahmad Shoaib, Mamas A. Mamas, Qazi S. Ahmad, Theresa M. McDonagh, Suzanna M.C. Hardman, Muhammad Rashid, Robert Butler, Simon Duckett, Duwarakan Satchithananda, James Nolan, Henry J. Dargie, Andrew L. Clark, John G.F. Cleland
International Journal of Cardiology.2019; 285: 40.     CrossRef
Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature
Laura E. Cowley, Daniel M. Farewell, Sabine Maguire, Alison M. Kemp
Diagnostic and Prognostic Research.2019;[Epub]     CrossRef
Development and validation of a nomogram to predict the prognosis of patients with squamous cell carcinoma of the bladder
Mei-Di Hu, Si-Hai Chen, Yuan Liu, Ling-Hua Jia
Bioscience Reports.2019;[Epub]     CrossRef
Assessing surgical difficulty in locally advanced mid-low rectal cancer: the accuracy of two MRI-based predictive scores
N. de'Angelis, F. Pigneur, A. Martínez-Pérez, G. C. Vitali, F. Landi, S. A. Gómez-Abril, M. Assalino, E. Espin, F. Ris, A. Luciani, F. Brunetti
Colorectal Disease.2019; 21(3): 277.     CrossRef
External Validation of START nomogram to predict 3-Month unfavorable outcome in Chinese acute stroke patients
BaiLi Song, XiangLiang Chen, Dan Tang, Mako Ibrahim, YuKai Liu, Linda Nyame, Teng Jiang, Wei Wang, Xiang Li, Chao Sun, Zheng Zhao, Jie Yang, JunShan Zhou, JianJun Zou
Journal of Stroke and Cerebrovascular Diseases.2019; 28(6): 1618.     CrossRef
Development and Validation of the Korean Diabetes Risk Score: A 10-Year National Cohort Study
Kyoung Hwa Ha, Yong-ho Lee, Sun Ok Song, Jae-woo Lee, Dong Wook Kim, Kyung-hee Cho, Dae Jung Kim
Diabetes & Metabolism Journal.2018; 42(5): 402.     CrossRef
Clinical relevance and validity of tools to predict infant, childhood and adulthood obesity: a systematic review
Oliver J Canfell, Robyn Littlewood, Olivia RL Wright, Jacqueline L Walker
Public Health Nutrition.2018; 21(17): 3135.     CrossRef
Letter to Editor
Laura E Cowley, Sabine A Maguire, Daniel M Farewell, Alison M Kemp
Law, Probability and Risk.2018; 17(3): 275.     CrossRef
Self-report assessment of severe periodontitis: Periodontal screening score development
Maria Clotilde Carra, Alice Gueguen, Frédérique Thomas, Bruno Pannier, Giuseppina Caligiuri, Philippe Gabriel Steg, Marie Zins, Philippe Bouchard
Journal of Clinical Periodontology.2018; 45(7): 818.     CrossRef
Predictive validity of the CriSTAL tool for short-term mortality in older people presenting at Emergency Departments: a prospective study
Magnolia Cardona, Ebony T. Lewis, Mette R. Kristensen, Helene Skjøt-Arkil, Anette Addy Ekmann, Hanne H. Nygaard, Jonas J. Jensen, Rune O. Jensen, Jonas L. Pedersen, Robin M. Turner, Frances Garden, Hatem Alkhouri, Stephen Asha, John Mackenzie, Margaret Pe
European Geriatric Medicine.2018; 9(6): 891.     CrossRef
Prediction of Drug-Related Risks Using Clinical Context Information in Longitudinal Claims Data
Andreas D. Meid, Andreas Groll, Dirk Heider, Sarah Mächler, Jürgen-Bernhard Adler, Christian Günster, Hans-Helmut König, Walter E. Haefeli
Value in Health.2018; 21(12): 1390.     CrossRef
Articles inEndocrinology and Metabolismin 2016
Won-Young Lee
Endocrinology and Metabolism.2017; 32(1): 62.     CrossRef
Development of Clinical Data Mart of HMG-CoA Reductase Inhibitor for Varied Clinical Research
Hun-Sung Kim, Hyunah Kim, Yoo Jin Jeong, Tong Min Kim, So Jung Yang, Sun Jung Baik, Seung-Hwan Lee, Jae Hyoung Cho, In Young Choi, Kun-Ho Yoon
Endocrinology and Metabolism.2017; 32(1): 90.     CrossRef
Response to Comment by Ayubi and Safiri. Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample. Diabetes Care 2017;40:751–758
Laura L. Ekblad, Juha O. Rinne, Pauli Puukka, Hanna Laine, Satu Ahtiluoto, Raimo Sulkava, Matti Viitanen, Antti Jula
Diabetes Care.2017; 40(9): e136.     CrossRef
Encrypted prediction: A hacker's perspective
Tara Karamlou, Daniel A. Velez, John J. Nigro
The Journal of Thoracic and Cardiovascular Surgery.2017; 154(6): 2038.     CrossRef
Personalized medicine. Closing the gap between knowledge and clinical practice
Juan-Manuel Anaya, Carolina Duarte-Rey, Juan C. Sarmiento-Monroy, David Bardey, John Castiblanco, Adriana Rojas-Villarraga
Autoimmunity Reviews.2016; 15(8): 833.     CrossRef
Comparison of screening scores for diabetes and prediabetes
Eduard Poltavskiy, Dae Jung Kim, Heejung Bang
Diabetes Research and Clinical Practice.2016; 118: 146.     CrossRef