Supplemental Table S2. Sensitivity Analyses for the Odds of Weak HGS in the Offspring by Sex according to Parental HGS Based on the KWGS 2023 Threshold

<table>
<thead>
<tr>
<th>Parental HGS</th>
<th>LS mean HGS in offspring, kg</th>
<th>P valuea</th>
<th>Offspring</th>
<th>OR (95% CI)</th>
<th>P valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weak HGS</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Son</td>
<td></td>
<td></td>
<td>n=37</td>
<td>n=980</td>
<td></td>
</tr>
<tr>
<td>No parent with weak HGS (n=872)</td>
<td>40.9±1.2</td>
<td>0.011</td>
<td>29 (78.4)</td>
<td>843 (86.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>One parent with weak HGS (n=124)</td>
<td>38.9±1.3</td>
<td><0.001</td>
<td>7 (8.9)</td>
<td>117 (11.9)</td>
<td>1.70 (0.74–3.88)</td>
</tr>
<tr>
<td>Both parents with weak HGS (n=21)</td>
<td>36.6±2.1</td>
<td>0.014</td>
<td>1 (2.7)</td>
<td>20 (2.0)</td>
<td>1.43 (0.20–10.51)</td>
</tr>
<tr>
<td>Daughter</td>
<td></td>
<td></td>
<td>n=81</td>
<td>n=852</td>
<td></td>
</tr>
<tr>
<td>No parent with weak HGS (n=808)</td>
<td>24.4±0.4</td>
<td>0.002</td>
<td>62 (76.5)</td>
<td>746 (87.6)</td>
<td>1.00</td>
</tr>
<tr>
<td>One parent with weak HGS (n=111)</td>
<td>22.4±0.6</td>
<td><0.001</td>
<td>15 (18.5)</td>
<td>96 (11.3)</td>
<td>1.76 (1.02–3.10)</td>
</tr>
<tr>
<td>Both parents with HGS (n=14)</td>
<td>22.4±1.4</td>
<td>0.113</td>
<td>4 (4.9)</td>
<td>10 (1.2)</td>
<td>3.73 (1.36–10.24)</td>
</tr>
</tbody>
</table>

Values are expressed as mean±standard error or number (%) unless otherwise indicated. The cutoff values for weak HGS were defined as <28.0 and <18.0 kg in men and women, respectively, based on the definition of sarcopenia from the KWGS 2023.

HGS, handgrip strength; KWGS, Korean Working Group on Sarcopenia; LS, least-square; OR, odds ratio; CI, confidence interval.

aP values were obtained in the mixed model, on assuming that random effects accounted for correlations within the same family; bP values were obtained through conditional logistic regression analysis.