Transarterial Radioembolization as an Effective Local Treatment Modality for Liver Metastasis of Thyroid Cancer

Yoo Hyung Kim1, Hyo-Cheol Kim2, Yun Bin Lee1,3, Samina Park4, Eun-Jae Chung5, Jin Chul Paeng6, Young Joo Park1,7

Departments of 1 Internal Medicine, 2 Radiology, 3 Department of Internal Medicine and Liver Research Institute, Departments of 4 Thoracic and Cardiovascular Surgery, 5 Otolaryngology-Head and Neck Surgery, 6 Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine; 7 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea

Transarterial radioembolization (TARE) has recently emerged as a new therapeutic option for patients with hepatocellular carcinoma. Microspheres impregnated with the radioisotope yttrium-90 (90Y) are selectively delivered through the hepatic artery, which feeds the tumor. 90Y, a β-emitting isotope with a short half-life (2.67 days), exerts powerful anti-cancer effects, with the emitted β particles having mean and maximum tissue penetration depths of 2.5 and 10 mm, respectively [1]. Here, we report a patient who presented with poorly differentiated thyroid cancer (PDCA) with lung, liver, and bone metastases and was successfully treated with TARE for liver metastases.

A 55-year-old man was referred for a huge neck mass and was suspected of having metastatic thyroid cancer. The primary thyroid mass in the right lobe invaded the trachea, and very large ipsilateral metastatic lymph nodes encased the right common carotid artery. A bone-destructive mass in the anterior mediastinum extended to the upper mediastinum and compressed the left innominate vein. Other hypermetabolic masses were found in the right acetabulum, both lungs, and the left lobe of the liver. The liver masses showed heterogeneous enhancement on arterial-phase dynamic computed tomography (CT) and intense hypermetabolism on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT (Fig. 1A, B).

Total thyroidectomy and neck dissection, innominate vein resection and reconstruction, en bloc resection of the sternum, and wedge resection of the lung were performed. Pathologic diagnosis concluded that the tumor was a PDCA originating from the tall cell variant of papillary thyroid cancer. BRAFV600E and TERTC228G mutations were identified. Planning angiography and a lung shunt scan showed minimal vascularity of the liver metastases (Fig. 1C) and negligible extrahepatic activity, respectively.

For hepatic metastasis, loco-regional treatments such as surgical resection, radiofrequency ablation therapy (RFA), transarterial chemoembolization (TACE), or external radiation therapy (EBRT) and/or systemic 131I therapy are traditionally considered [2]. However, the applications of loco-regional treatment options to large masses with weak arterial-phase hyperenhancement (APHE) are limited. In this particular case, surgical treatment was not suitable because of the patient’s previous major surgery. The tumor (5.2 cm) was too large to be treated by RFA. 131I was expected to be relatively ineffective as the tumor was PDCA and showed high FDG uptake. TACE was also not suitable because of weak APHE. We thoroughly discussed the pos-
possible treatment options, including EBRT and TARE, with the patient; finally, TARE was chosen.

Radioactive ^{90}Y-labeled resin microspheres (total 1.2 GBq) were injected into the segment IV artery and the segment II/III artery, and the mean target absorbed dose was 110 Gy (Fig. 1D). The patient neither suffered from post-embolization symptoms, such as fever and right upper abdominal pain, nor showed any signs of hepatic failure. One month after the procedure, contrast-enhanced dynamic CT and ^{18}F-FDG PET/CT demonstrated markedly reduced arterial enhancement and metabolism, respectively (Fig. 1E, F).

After TARE treatment, the patient received EBRT to the neck for locoregional disease control, followed by ^{131}I therapy with 150 mCi for systemic disease control. A whole-body scan performed 3 days after ^{131}I therapy identified radioactive iodine (RAI)-avid masses in the neck (B, C, D, E) RAI-avid masses in the neck (B, C, D) and RAI-refractory masses in the right acetabulum (E). The left panels show ^{131}I single-photon emission computed tomography/computed tomography (SPECT/CT) scans, and the right panels show ^{18}F-fluorodeoxyglucose (^{18}F-FDG) PET/CT scans at the same level. (F) A RAI-refractory mass in the liver. (G) A dynamic CT scan 3 months after transarterial radioembolization.

Fig. 1. (A) A dynamic computed tomography (CT) scan of the hepatic arterial phase performed before transarterial radioembolization (TARE) shows heterogeneous enhancement (low in the central area and high in peripheral area) of liver metastases (red arrows). (B) An ^{18}F-fluorodeoxyglucose (^{18}F-FDG) positron emission tomography (PET)/CT scan at the same level shows metastatic masses with hypermetabolism (red arrows). (C) A common hepatic angiogram shows minimal hypervascularity of liver metastases (red circle with dotted line). (D) PET/CT immediately after TARE shows high radioactivity within the tumor (red arrows). (E) A CT scan of the hepatic arterial phase performed 1 month after TARE shows reduced arterial enhancement (red arrows). (F) An ^{18}F-FDG PET/CT scan at the same level as (B) shows reduced metabolism (red arrows). Tg, thyroglobulin; TSH, thyroid-stimulating hormone; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase.

Fig. 2. (A) Whole-body scan performed 3 days after ^{131}I therapy. Red arrows indicate radioactive iodine (RAI)-avid masses in the neck. (B, C, D, E) RAI-avid masses in the neck (B, C, D) and RAI-refractory masses in the right acetabulum (E). The left panels show ^{131}I single-photon emission computed tomography/computed tomography (SPECT/CT) scans, and the right panels show ^{18}F-fluorodeoxyglucose (^{18}F-FDG) PET/CT scans at the same level. (F) A RAI-refractory mass in the liver. (G) A dynamic CT scan 3 months after transarterial radioembolization.
size was reduced to 15 cm. The metastatic mass, which had changed to become dense and fibrotic, could be surgically removed [5]. Likewise, TARE was successfully applied for a large, hypervascular metastatic mass in the liver from thyroid cancer as a bridging therapy to surgical resection. Both in this case and our case, the expected effects were not influenced by the tumor differentiation status, which is the main limitation of 131I therapy. Therefore, TARE could be considered alternatively as an effective locoregional treatment option not only for metastatic masses unsuitable for surgery or TACE, but also for large poorly differentiated tumors with weak APHE.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank Injae Wang for proofreading the manuscript. There is no funding information to declare.

ORCID

Yoo Hyung Kim https://orcid.org/0000-0002-5923-4915
Young Joo Park https://orcid.org/0000-0002-3671-6364

REFERENCES