Identification of Mutations in the Thyroxine-Binding Globulin (TBG) Gene in Patients with TBG Deficiency in Korea

Jung Heo¹, Sang-Mi Kim², Hyun Jin Ryu¹, Hyunjoo Park¹, Tae Hyuk Kim¹, Jae Hoon Chung¹, Hyung-Doo Park², Sun Wook Kim¹

¹Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, ²Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Background: Thyroxine-binding globulin (TBG) is a major transporter protein for thyroid hormones. The serpin family A member 7 (SERPINA7) gene codes for TBG, and mutations of the SERPINA7 gene result in TBG deficiency. Although more than 40 mutations have been reported in several countries, only a few studies of TBG deficiency and SERPINA7 gene mutation have been performed in Korea. The aim of this study is to review the clinical presentations and laboratory findings of patients with TBG deficiency and to investigate the types of SERPINA7 gene mutation.

Methods: Five unrelated Korean adults with TBG deficiency attending endocrinology clinic underwent SERPINA7 gene sequencing. Four patients harbored a SERPINA7 gene mutation. Serum thyroid hormones, anti-microsomal antibodies, and TBG were measured. Genomic DNA was extracted from whole blood. All exons and intron-exon boundaries of the TBG gene were amplified and sequencing was performed.

Results: Two patients were heterozygous females, and the other two were hemizygous males. One heterozygous female had coexisting hypothyroidism. The other heterozygous female had erroneously prescribed levothyroxine at a local clinic. One hemizygous male harbored a novel mutation, p.Phe269Cysfs*18, which caused TBG partial deficiency. Three patients had the p.Leu372Phefs*23 mutation, which is known as TBG-complete deficiency Japan (TBG-CDJ) and was also presented in previous mutation analyses in Korea.

Conclusion: This study presents four patients diagnosed with TBG deficiency and provides the results of SERPINA7 gene sequencing. One novel mutation, p.Phe269Cysfs*18, causing TBD-partial deficiency and three cases of TBG-CDJ were demonstrated. It is necessary to identify TBG deficiency to prevent improper treatment. Also, sequencing of the SERPINA7 gene would provide valuable information about the TBG variants in Korea.

Keywords: Thyroxine-binding globulin; SERPINA7 protein, human; Thyroxine-binding globulin deficiency; Inherited thyroxine-binding globulin deficiency

Received: 14 September 2022, Revised: 8 November 2022, Accepted: 15 November 2022

Corresponding author: Sun Wook Kim
Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-1653, Fax: +82-2-6918-4653
E-mail: sunwooksnc.kim@samsung.com

Copyright © 2022 Korean Endocrine Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Thyroxine-binding globulin (TBG) is a major thyroid hormone binding protein that binds to approximately 70% of triiodothyronine (T3) and 75% of thyroxine (T4) in serum [1-4]. TBG, a 54-kDa glycoprotein with a single chain of 395 amino acids, is synthesized in the liver. It is encoded by four exons in single gene called serpin family A member 7 (SERPINA7) which is located on the long arm of the X-chromosome (Xq22.2) [5]. TBG mutations have three phenotypes of TBG-complete deficiency (TBG-CD), TBG partial deficiency (TBG-PD), and TBG excess (TBG-E). TBG-CD is a rare condition harboring undetectable TBG concentration with a frequency of 1 in 15,000 newborns. TBG-PD is the most common phenotype among the TBG deficiencies with a frequency of 1 in 4,000 newborns [6-8]. The affected patients present clinically euthyroid status but show abnormal results in thyroid function tests (TFT) which can lead to misdiagnoses and improper treatment. Because TBG mutations are inherited in X-linked fashion, TBG deficiency is fully expressed in hemizygous males and homozygous females and less expressed in heterozygous females whose TBG concentration can overlap with the normal range [9].

To date, 49 mutations in the SERPINA7 gene have been reported to cause TBG deficiency [10-14]. In Korea, reports of TBG deficiency mainly discuss neonates and pediatric patients, and only a few mutation analyses of the SERPINA7 gene have been conducted. Park et al. [15] performed a mutation analysis in two neonates and revealed a single nucleotide deletion of codon 352 in exon 4, which is a prevalent variant in the Japanese population, called TBG-complete deficiency Japan (TBG-CDJ) [15,16]. A mutation analysis of an 11-year-old boy with TBG-CD by Baek et al. [17] also found the TBG-CDJ mutation. Pappa et al. [14] provided a summary of all TBG mutations reported to date including a Korean variant named TBG-PDKa that caused TBG-PD. However, because TBG-PDKa was not published in the literature, clinical information such as patient age, sex, habitation, comorbidities, and medication are unknown. In this study, we review the clinical presentations and laboratory findings of adult patients with TBG deficiency in Korea, and investigate the types of SERPINA7 gene mutation through direct sequencing.

METHODS

Patients

Five unrelated Korean patients with TBG deficiency attending endocrinology clinic at Samsung Medical Center underwent SERPINA7 gene sequencing with informed consents between June 2021 and March 2022. Four of the five patients, two males and two females, harbored SERPINA7 gene mutations, and one of them presented a novel mutation. This study was approved by the Institutional Review Board of Samsung Medical Center (SMC-IRB 2021-06-134).

Measurement

Total T4, total T3, free T4, free T3, thyroid stimulating hormone (TSH), anti-microsomal antibody (AMA) and TBG were measured using the immunoradiometric assay (IRMA), radioimmunoassay (RIA), and electrochemiluminescence immunoassay (ECLIA) techniques.

Polymerase chain reaction amplification and direct sequencing

Blood specimens were collected from the study patients to for SERPINA7 sequencing. Using a Wizard genomic DNA purification kit, genomic was extracted from whole blood in accordance with the manufacturer’s instructions (Promega, Madison, WI, USA). All intron-exon boundaries and exons of the SERPINA7 gene were amplified, and direct sequencing was conducted using an ABI Prism 3100 GeneticAnalyzer (Applied Biosystems, Waltham, MA, USA) with a BigDye terminator cycle sequencing-ready reaction kit (Applied Biosystems). The primer sets used for direct sequencing are shown in Supplemental Table S1. The nucleotides and corresponding protein sequences were represented in accordance with the reference sequences of NM_000354.6 and NP_000345.2, respectively. The pathogenicity of the variants was analyzed with the Single Nucleotide Polymorphism Database (dbSNP) 147, Clinvar, and Human Gene Mutation Database (HGMD). The population frequency was acquired through gnomAD v.2.1.1 and the Korean Reference Genome Database (KRGDB, accessed on October 15, 2021). The variants were classified into five groups following the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines.

RESULTS

Case series

Case 1

This female patient was 47-year-old when she first visited endocrinology clinic of Samsung Medical Center after long-term fluctuation in thyroid function. The patient had been diagnosed...
with hypothyroidism at a local clinic in 2018. Otherwise she had no remarkable medical history while her mother and sister had hypothyroidism. In the 2nd year of taking levothyroxine, her T3 level remained low, and her levothyroxine dosage was increased. Fatigue, palpitation, hand tremor and excessive weight loss of 10 kg followed the dosage increase. Failure to adjust appropriate dosage of levothyroxine led the patients to our endocrinology clinic on November 3, 2020. The serum free T4 and TSH levels reported at the local clinic shortly before her visit to our clinic were 2.09 ng/dL (normal range, 0.79 to 1.86) and 0.03 μIU/mL (normal range, 0.3 to 6.00), respectively, while on 88 μg of levothyroxine. No abnormal feature was observed in physical examination, thyroid ultrasonography, or thyroid scintigraphy. The AMA, thyroglobulin antibody, and anti-TSH receptor antibody were all within normal range. Measurement of TBG showed a decreased level of 5.35 μg/mL (normal range, 10.90 to 43.20). Levothyroxine was gradually tapered off. About 3 months after discontinuation of levothyroxine, she had no signs or symptoms of hypothyroidism, and her free T4, TSH, and total T3 were 1.16 ng/dL (normal range, 0.79 to 1.86), 6.58 μIU/mL (normal range, 0.3 to 6.00), and 42.2 ng/dL (normal range, 76 to 190), respectively. Upon diagnosis of TBG deficiency rather than hypothyroidism, sequencing of the SERPINA7 gene was conducted. As a result, a 1-bp deletion (c.1114del) in exon 5 was detected.

Case 2

A 44-year-old male presented with decreased levels of total T3 of 64 ng/dL (normal range, 80 to 200) and total T4 of 3.7 μg/dL (normal range, 5.1 to 14.1) during a routine health examination in 2001 at Samsung Medical Center. His TSH was 1.14 μIU/mL (normal range, 0.3 to 6.00). The patients had no medical or family history. He did not present symptoms of hypothyroidism or thyrotoxicosis, and no abnormal findings were observed in physical examination. Thyroid ultrasonography revealed nothing significant. His AMA, thyroglobulin antibody, and anti-TSH receptor antibody levels were all within the normal range. Thereafter, decreased levels of total T3 and T4 were consistently observed in TFTs conducted every 1 to 2 years. Elevated free T4 without any symptoms or signs of thyrotoxicosis was observed episodically, and that led him to visit our endocrinology clinic in 2017, when he was 61-year-old. His TBG level was 1.42 μg/mL (normal range, 10.90 to 43.20), and under the diagnosis of TBG deficiency, TFTs have been performed every year without any treatment. The result of sequencing of SERPINA7 gene was a 1-bp deletion (c.1114del) in exon 5.

Case 3

A 41-year-old female visited a local clinic in 2011 because of anterior neck discomfort and eyelid swelling. Testing of her thyroid function revealed hypothyroidism with TSH above 100 μIU/mL (normal range, 0.3 to 6.00) and decreased free T4 of 0.18 ng/dL (normal range, 0.79 to 1.86). She visited our endocrinology clinic after initiation of levothyroxine 100 μg. We adjusted her dosage to 75 μg. TSH was suppressed to 0.059 μIU/mL (normal range, 0.3 to 6.00), whereas total T3 level stayed low, with a value of 74.01 ng/dL (normal range, 76 to 190). Her AMA and thyroglobulin antibody were both positive with values of 133.1 U/mL (normal range, 0 to 60) and 835.3 U/mL (normal range, 0 to 60), respectively. Thyroid ultrasonography showed diffuse parenchymal changes suggestive of thyroiditis. She did not have any other medical history except hypothyroidism. Her son was also diagnosed with hypothyroidism. While being treated with 50 μg of levothyroxine, her total T3 level was constantly low, but her free T4 and TSH levels were in the normal ranges. Testing for TBG showed a decreased concentration of 5.47 μg/mL (normal range, 10.90 to 43.20), which produced a diagnosis of hypothyroidism combined with TBG deficiency. The SERPINA7 gene sequencing revealed a 1-bp deletion (c.1114del) in exon 5.

Case 4

A 61-year-old male showed low total T3 in the TFTs of his routine health check-ups beginning in 2013, though his free T4 and TSH levels were in the normal ranges. Consequently, he was referred to our endocrinology clinic in 2021. He did not have any medical or family history, and he was not on any medication. Physical examination and review of system revealed no abnormal findings. Thyroid ultrasonography also presented normal thyroid volume and parenchyma. At his first visit to our endocrinology clinic, his TSH, total T3, and free T4 were 2.62 μIU/mL (normal range, 0.3 to 6.00), 48.8 ng/dL (normal range, 76 to 190), and 1.16 ng/dL (normal range, 0.79 to 1.86), respectively. His AMA, thyroglobulin antibody, and anti-TSH receptor antibody levels were all within normal ranges. His TBG level was low as 5.16 μg/mL (normal range, 10.90 to 43.20), which led to a diagnosis of TBG deficiency. Sequencing of SERPINA7 gene showed a 2-bp deletion (c.806_807del) in exon 3.

Result of SERPINA7 gene sequencing

The results of sequencing of the SERPINA7 gene of the four study patients are shown in Fig. 1. In heterozygous female patient 1 and 3, and in hemizygous male patient 2, a 1-bp deletion...
(c.1114del) in exon 5 was detected. The deletion was predicted to cause a frameshift and generate a premature stop codon 23 amino acids downstream of the variant position [p.(Leu372Phefs*23)]. Codon 372 occurs in the middle of the last coding exon (exon 5), meaning that it would escape nonsense-mediated mRNA decay. Because the variant is predicted to remove less than 10% of the protein product (22/415 amino acids), pathogenic and very strong (PVS1) was applied at a moderate evidence level. The allele frequency in the control database (0.0002 in gnomAD East Asian) was below the maximum credible population allele frequency (0.002) calculated using the alleleFrequencyApp tool [18] with 1:4,000 for prevalence and setting allelic heterogeneity to 0.1, genetic heterogeneity to 1, and penetrance to 50% [14,19]. This variant has previously been reported in other patients affected with complete TBG deficiency in the Japanese population [16,20]. Therefore, this frameshift variant was classified as a likely pathogenic variant (PVS1+PM2) [21].

In patient 4, sequencing of SERPINA7 gene revealed a hemizygous 2-bp deletion (c.806_807del) in exon 3 (Fig. 1). The deletion was predicted to cause a frameshift and generate a premature stop codon 18 amino acids downstream of the variant position, resulting in nonsense-mediated decay [p.(Phe269Cysfs*18)]. This variant was not found in control databases, such as the gnomAD (East Asian population) and KRGDB, nor has it been previously reported. Therefore, this novel frameshift variant was classified as a likely pathogenic variant (PVS1+PM2) [21].

Summarized baseline characteristics, lab findings, and courses
The results of the baseline characteristics, TFTs, TBG, thyroid autoantibodies, and direct sequencing of the SERPINA7 gene of the four study patients are provided in Table 1. At their first visit to our endocrinology clinic, the patients ranged from 47 to 64 years of age. In terms of mutations, patient 1 and 3 were heterozygous females, and patient 2 and 4 were hemizygous males. Patient 1, 2, and 3 harbored a known mutation, p.Leu372Phefs*23 (TBG-CDJ), which is a prevalent mutation type in Japan. Patient 4 presented a novel mutation, p.Phe269Cysfs*18, causing TBG-PD. Only patient 3 had coexisting hypothyroidism. Patient 1 and 3 had a family history of hypothyroidism, but additional sequencing of the family members was not performed. As demonstrated in Tables 2, 3, patient 1 and patient 3 were taking levothyroxine when visited to our endocrinology clinic. Patient 1 eventually tapered off levothyroxine, whereas patient 3 kept taking levothyroxine due to coexisting hypothyroidism.
Table 1. The Results of Baseline Characteristics, Thyroid Function Tests, TBG, Thyroid Autoantibodies, and Results of Direct Sequencing of SERPINA7 Gene

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Sex</th>
<th>Age, yr</th>
<th>Genotype</th>
<th>Mutation</th>
<th>Coexisting hypothyroidism</th>
<th>Family history of hypothyroidism</th>
<th>Total T3, ng/dL (76–190)</th>
<th>FT4, ng/dL (0.79–1.86)</th>
<th>TSH, μIU/mL (0.3–6.00)</th>
<th>FT3, pg/mL (1.63–3.78)</th>
<th>Total T4, μg/dL (5.1–14.1)</th>
<th>TBG, μg/mL (10.90–43.20)</th>
<th>AMA, U/mL (0–60)</th>
<th>Tg Ab, U/mL (0–60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>F</td>
<td>47</td>
<td>Hemizygous</td>
<td>c.1114del, p.(Leu372Phefs*23)</td>
<td>None</td>
<td>Mother, sister</td>
<td>54.8±11.8</td>
<td>1.3±0.3</td>
<td>3.4±2.9</td>
<td>3.5±0.1</td>
<td>1.3</td>
<td>5.1±0.3</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Patient 2</td>
<td>M</td>
<td>61</td>
<td>Hemizygous</td>
<td>c.1114del, p.(Leu372Phefs*23)</td>
<td>None</td>
<td>None</td>
<td>55.8±10.6</td>
<td>1.8±0.3</td>
<td>2.0±0.9</td>
<td>2.83</td>
<td>2.9±0.7</td>
<td>1.42</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Patient 3</td>
<td>F</td>
<td>41</td>
<td>Hemizygous</td>
<td>c.1114del, p.(Leu372Phefs*23)</td>
<td>Hypothyroidism</td>
<td>Son</td>
<td>56±10.5</td>
<td>1.4±0.2</td>
<td>2.1±2.3</td>
<td>2.97</td>
<td>3.5</td>
<td>5.47</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Patient 4</td>
<td>M</td>
<td>61</td>
<td>Hemizygous</td>
<td>c.806_807del, p.(Phe269Cysfs*18)</td>
<td>None</td>
<td>None</td>
<td>58.9±8.9</td>
<td>1.3±0.2</td>
<td>4.1±1.3</td>
<td>4.97</td>
<td>1.7</td>
<td>5.16</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard deviation. TBG, thyroxine-binding globulin; SERPINA7, serpin family A member 7; T3, triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; T4, thyroxine; AMA, anti-microsomal antibody; Tg Ab, thyroglobulin antibody.

Table 2. The Detailed Thyroid Hormones and Dosage of Levothyroxine of Patient 1

<table>
<thead>
<tr>
<th>Visit</th>
<th>Days from the first visit</th>
<th>Total T3, ng/dL (76–190)</th>
<th>FT4, ng/dL (0.79–1.86)</th>
<th>TSH, μIU/mL (0.3–6.00)</th>
<th>FT3, pg/mL (1.63–3.78)</th>
<th>Total T4, μg/dL (5.1–14.1)</th>
<th>TBG, μg/mL (10.90–43.20)</th>
<th>Levothyroxine dose, μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>58.5</td>
<td>1.78</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>61</td>
<td>1.46</td>
<td>0.65</td>
<td>3.59</td>
<td>5.35</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>126</td>
<td>43.1</td>
<td>1.3</td>
<td>4.09</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>188</td>
<td>69.3</td>
<td>1.03</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>262</td>
<td>42.2</td>
<td>1.16</td>
<td>6.58</td>
<td>3.49</td>
<td>1.3</td>
<td>4.86</td>
<td>Tapered off</td>
</tr>
</tbody>
</table>

Mean±SD 54.8±11.8 1.3±0.3 3.4±2.9 3.5±0.1 5.1±0.3

T3, triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; T4, thyroxine; TBG, thyroxine-binding globulin; SD, standard deviation.

DISCUSSION

In this study, direct sequencing of the SERPINA7 gene was conducted in five unrelated adults with TBG deficiency from a tertiary center in Korea. Four of those patients harbored SERPINA7 gene mutation, one novel mutation of p.Phe269Cysfs*18 and three known mutations of p.Leu372Phefs*23. The affected females, patient 1 and 3, were heterozygous for the mutation. Patient 4, a hemizygous male had a novel mutation and presented a TBG level of 5.16 μg/mL, which is similar to the levels of females, patient 1 and 3, were heterozygous for the mutation.

Endocrinol Metab 2022 Forthcoming. Posted online 2022
Table 3. The Detailed Thyroid Hormones and Dosage of Levothyroxine of Patient 3

<table>
<thead>
<tr>
<th>Visit</th>
<th>Days from the first visit</th>
<th>Total T3, ng/dL (76–190)</th>
<th>FT4, ng/dL (0.79–1.86)</th>
<th>TSH, μIU/mL (0.3–6.00)</th>
<th>FT3, pg/mL (1.63–3.78)</th>
<th>Total T4, μg/dL (5.1–14.1)</th>
<th>TBG, μg/mL (10.90–43.20)</th>
<th>Levothyroxine dose, μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>37.2</td>
<td>1.29</td>
<td>1.05</td>
<td>56</td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>61.09</td>
<td>1.2</td>
<td>7.15</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
<td>66.21</td>
<td>1.57</td>
<td>0.59</td>
<td>75</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>251</td>
<td>56.7</td>
<td>1.28</td>
<td>3.67</td>
<td>75</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>656</td>
<td>74.01</td>
<td>1.79</td>
<td>0.059</td>
<td>75</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>866</td>
<td>47.8</td>
<td>1.51</td>
<td>1.088</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>1,048</td>
<td>57.48</td>
<td>1.58</td>
<td>0.131</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>1,234</td>
<td>56.61</td>
<td>1.46</td>
<td>1.589</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>1,594</td>
<td>44.54</td>
<td>1.39</td>
<td>1.345</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>1,980</td>
<td>41.2</td>
<td>1.37</td>
<td>0.612</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>2,246</td>
<td>42.5</td>
<td>1.2</td>
<td>2.26</td>
<td>5.47</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>2,435</td>
<td>66.27</td>
<td>1.44</td>
<td>0.533</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>2,620</td>
<td>64.29</td>
<td>1.29</td>
<td>7.802</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>3,012</td>
<td>62.5</td>
<td>1.37</td>
<td>2.24</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>3,402</td>
<td>56</td>
<td>1.39</td>
<td>1.62</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>16</td>
<td>3,764</td>
<td>61.8</td>
<td>1.32</td>
<td>1.67</td>
<td>2.97</td>
<td>3.5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td></td>
<td></td>
<td>56±10.5</td>
<td>1.4±0.2</td>
<td>2.1±2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T3, triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; FT3, free triiodothyronine; T4, thyroxine; TBG, thyroxine-binding globulin; SD, standard deviation.

Table 4. Summary of Previous Reports of TBG Deficiency and Mutation Analysis in Korea

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Subject</th>
<th>No. of subjects</th>
<th>Age</th>
<th>Reason for TBG testing</th>
<th>Coexisting thyroid function abnormality</th>
<th>Phenotype</th>
<th>Sequencing in family member (variant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jo et al. [25]</td>
<td>1995</td>
<td>Neonate</td>
<td>2</td>
<td>4.5 wk</td>
<td>Low T4 on screening</td>
<td>No</td>
<td>TBG-CD</td>
<td>Not done</td>
</tr>
<tr>
<td>Lee et al. [28]</td>
<td>1996</td>
<td>Neonate</td>
<td>2</td>
<td>1 mo</td>
<td>Low T4 on screening</td>
<td>No</td>
<td>TBG-CD</td>
<td>Not done</td>
</tr>
<tr>
<td>Park et al. [15]</td>
<td>2005</td>
<td>Neonate</td>
<td>2</td>
<td>3.5 wk</td>
<td>Low T4 on screening</td>
<td>No</td>
<td>TBG-CD</td>
<td>TBG-CDJ</td>
</tr>
<tr>
<td>Lee et al. [24]</td>
<td>2015</td>
<td>Neonate</td>
<td>32</td>
<td>35.8 day</td>
<td>Low T4 on screening</td>
<td>Hypothyroidism (18/32)</td>
<td>TBG-CD</td>
<td>Not done</td>
</tr>
<tr>
<td>Baek et al. [17]</td>
<td>1996</td>
<td>Child</td>
<td>1</td>
<td>11 yr</td>
<td>Not specified</td>
<td>No</td>
<td>TBG-CD</td>
<td>TBG-CDJ</td>
</tr>
<tr>
<td>Lee et al. [27]</td>
<td>2002</td>
<td>Child</td>
<td>1</td>
<td>22 mo</td>
<td>Low T4 on screening</td>
<td>Hypothyroidism</td>
<td>TBG-CD</td>
<td>Not done</td>
</tr>
<tr>
<td>Ihm et al. [23]</td>
<td>1995</td>
<td>Adult</td>
<td>2</td>
<td>36, 51 yr</td>
<td>Low T3 and T4</td>
<td>No</td>
<td>TBG-CD</td>
<td>TBG-CDJ</td>
</tr>
<tr>
<td>Kim et al. [22]</td>
<td>2009</td>
<td>Adult</td>
<td>1</td>
<td>28 yr</td>
<td>Normal T3, low TSH, high free T4</td>
<td>Graves' disease</td>
<td>TBG-CD</td>
<td>TBG-CDJ</td>
</tr>
<tr>
<td>Hur et al. [26]</td>
<td>2011</td>
<td>Adult</td>
<td>1</td>
<td>68 yr</td>
<td>Low total T3/T4 and high free T4</td>
<td>No</td>
<td>TBG-CD</td>
<td>Not done</td>
</tr>
</tbody>
</table>

TBG, thyroxine-binding globulin; T4, thyroxine; TBG-CD, thyroxine-binding globulin complete deficiency; TBG-CDJ, thyroxine-binding globulin complete deficiency Japan; T3, triiodothyronine; TSH, thyroid stimulating hormone.

PD so far [14]. Notably, the locus of this novel mutation is between those of the two mutations causing TBG-CD, TBG-CD Poland and TBG-CDJ [16,30]. Meanwhile, some cases of TBG-CDs are also caused by point mutations causing protein truncation.
tion [31-33]. Other factors such as protein folding or secretion can also affect the phenotype, so a protein structural analysis will help to verify the mechanism of the discordance in the novel mutation.

The natural course until the diagnosis of TBG deficiency in our study subjects was well described here. Patient 1 was erroneously diagnosed with hypothyroidism and was on levothyroxine, and she eventually was tapered off levothyroxine after being diagnosed with TBG deficiency. Patient 3 was initially diagnosed with hypothyroidism, but because TSH was suppressed as the levothyroxine dosage was increased but T3 remained consistently low, TBG deficiency was suspected. Generally, TBG deficiency is suspect when total thyroid hormones are low while free T4 and TSH are normal [14]. TBG deficiency exhibits clinically euthyroid status and does not require treatment. However, physicians unaware of this condition could misdiagnose TBG deficiency as hypothyroidism [12,34,35], despite this rarely occurs in endocrinologist’s practice. Recognizing TBG deficiency is important because misdiagnosis for hypothyroidism might lead to iatrogenic thyrotoxicosis. When only total thyroid hormones level is low while TSH and free T4 are normal, history taking, checking symptoms of hypothyroidism, physical examination, and most importantly testing serum TBG level, along with thyroid autoantibodies or ultrasonography if necessary would help to avoid misdiagnosis.

This study has some limitations. First, it was conducted in a single medical center with a small number of study subjects. Therefore, it is insufficient to identify the pool of TBG variants in Korea. Second, no investigation of the mutational status of family members of the affected patients was conducted. Additional SERPINA7 gene sequencing in immediate family members of the patient harboring the novel mutation is necessary, to help identify whether the mutation is de novo or inherited. However, a mutation analysis in unrelated subjects might be more representative than in family members, given that TBG variants other than TBG-CDJ had not been identified in Korea before this study.

In conclusion, this study presented four patients diagnosed with TBG deficiency and provided the results of SERPINA7 gene sequencing. As a result, one novel mutation, p.Phe269Cys fs*18, causing TBD-PD and three cases of TBG-CDJ were found. Along with previous mutation analyses in Korea, this result suggests that TBG-CDJ could be a dominant variant in the Korean population. The novel mutation p.Phe269Cys fs*18 might also partially contribute to TBG variants in Korea, but further analyses of family members and other unrelated TBG deficiency patients is required. Early recognition of TBG deficiency in patients with discordant TFTs is necessary to prevent improper treatment. Although SERPINA7 gene sequencing is not necessary to diagnose TBG deficiency, it could provide supplementary information about the TBG variants in Korea.

CONFLICTS OF INTEREST
No potential conflict of interest relevant to this article was reported.

AUTHOR CONTRIBUTIONS

ORCID
Jung Heo https://orcid.org/0000-0002-4034-8429
Sun Wook Kim https://orcid.org/0000-0002-6858-3439

REFERENCES
1. DeGroot LJ. Endocrinology. 2nd ed. Philadelphia: Saun-
ders; 1989. Chapter, Transport, cellular uptake, and metabo-
lism of thyroid hormone; p. 541-61.
2. Werner SC, Braverman LE, Ingbar SH. Werner’s the thyroid: a fundamental and clinical text. 5th ed. Philadelphia: Lippincott; 1986. Chapter 6, Hormone transport in blood; p. 116-
27.
6. Janssen OE, Bertenshaw R, Takeda K, Weiss R, Refetoff S. Molecular basis of inherited thyroxine-binding globulin de-

www.e-enm.org

