Skip Navigation
Skip to contents

Endocrinol Metab : Endocrinology and Metabolism

clarivate
OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Cell cycle"
Filter
Filter
Article type
Keywords
Publication year
Authors
Original Article
Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody
Miseon Lee, Kunsoo Rhee
Endocrinol Metab. 2015;30(1):53-57.   Published online March 27, 2015
DOI: https://doi.org/10.3803/EnM.2015.30.1.53
  • 3,413 View
  • 32 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract PDFPubReader   
Background

Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis.

Methods

We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles.

Results

Ninein signals were significantly impaired in CPAP-depleted cells.

Conclusion

The results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.

Citations

Citations to this article as recorded by  
  • The intercentriolar fibers function as docking sites of centriolar satellites for cilia assembly
    Sungjin Ryu, Donghee Ko, Byungho Shin, Kunsoo Rhee
    Journal of Cell Biology.2024;[Epub]     CrossRef
  • CPAP insufficiency leads to incomplete centrioles that duplicate but fragment
    Alejandra Vásquez-Limeta, Kimberly Lukasik, Dong Kong, Catherine Sullenberger, Delgermaa Luvsanjav, Natalie Sahabandu, Raj Chari, Jadranka Loncarek
    Journal of Cell Biology.2022;[Epub]     CrossRef
  • Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer
    Radhika R. Gudi, Harinarayanan Janakiraman, Philip H. Howe, Viswanathan Palanisamy, Chenthamarakshan Vasu
    Oncotarget.2021; 12(8): 807.     CrossRef
  • NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation
    Erika Mikulenkova, Jakub Neradil, Ondrej Vymazal, Jan Skoda, Renata Veselska
    Cells.2020; 9(3): 692.     CrossRef
  • ODF2/Cenexin maintains centrosome cohesion by restricting β-catenin accumulation
    Kefei Yang, Marco Andreas Tylkowski, Daniela Hüber, Constanza Tapia Contreras, Sigrid Hoyer-Fender
    Journal of Cell Science.2018;[Epub]     CrossRef
Close layer
Review Article
Adrenal gland
The Molecular Pathogenesis of Pituitary Adenomas: An Update
Xiaobing Jiang, Xun Zhang
Endocrinol Metab. 2013;28(4):245-254.   Published online December 12, 2013
DOI: https://doi.org/10.3803/EnM.2013.28.4.245
  • 4,090 View
  • 43 Download
  • 37 Crossref
AbstractAbstract PDFPubReader   

Pituitary tumors represent the most common intracranial neoplasms accompanying serious morbidity through mass effects and inappropriate secretion of pituitary hormones. Understanding the etiology of pituitary tumorigenesis will facilitate the development of satisfactory treatment for pituitary adenomas. Although the pathogenesis of pituitary adenomas is largely unknown, considerable evidence indicates that the pituitary tumorigenesis is a complex process involving multiple factors, including genetic and epigenetic changes. This review summarized the recent progress in the study of pituitary tumorigenesis, focusing on the role of tumor suppressor genes, oncogenes and microRNAs.

Citations

Citations to this article as recorded by  
  • Plurihormonal Pituitary Neuroendocrine Tumors: Clinical Relevance of Immunohistochemical Analysis
    Roxana-Ioana Dumitriu-Stan, Iulia-Florentina Burcea, Ramona Dobre, Valeria Nicoleta Nastase, Raluca Amalia Ceausu, Marius Raica, Catalina Poiana
    Diagnostics.2024; 14(2): 170.     CrossRef
  • LncRNA MYMLR promotes pituitary adenoma development by upregulating carbonyl reductase 1 via sponging miR-197-3p
    Tuo Wang, Ping Mao, Yan Zhang, Bo Cui, Mao-De Wang, Ya Li, Ke Gao
    Anti-Cancer Drugs.2022; 33(10): 1058.     CrossRef
  • Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells
    Jun Y. Oh, Robert C. Osorio, Jangham Jung, Luis Carrete, Nikita Choudhary, Meeki Lad, Atul Saha, Manish K. Aghi
    Cancers.2022; 15(1): 110.     CrossRef
  • EMT-Related Markers in Serum Exosomes are Potential Diagnostic Biomarkers for Invasive Pituitary Adenomas
    Kelin Chen, Guoge Li, Xixiong Kang, Pinan Liu, Lingye Qian, Yijun Shi, Rasha Alsamani Osman, Zhijun Yang, Guojun Zhang
    Neuropsychiatric Disease and Treatment.2021; Volume 17: 3769.     CrossRef
  • The Role of Long Noncoding RNAs in the Biology of Pituitary Adenomas
    Ozal Beylerli, Ilgiz Gareev, Valentin Pavlov, Xin Chen, Shiguang Zhao
    World Neurosurgery.2020; 137: 252.     CrossRef
  • Sellar Tumors
    Katherine E. Schwetye, Sonika M. Dahiya
    Surgical Pathology Clinics.2020; 13(2): 305.     CrossRef
  • Genomic and molecular characterization of pituitary adenoma pathogenesis: review and translational opportunities
    Mazin Elsarrag, Parantap D. Patel, Ajay Chatrath, Davis Taylor, John A. Jane
    Neurosurgical Focus.2020; 48(6): E11.     CrossRef
  • Metabolic profiling reveals distinct metabolic alterations in different subtypes of pituitary adenomas and confers therapeutic targets
    Jie Feng, Hua Gao, Qi Zhang, Yang Zhou, Chuzhong Li, Sida Zhao, Lichuan Hong, Jinjin Yang, Shuyu Hao, Wan Hong, Zhengping Zhuang, Guowang Xu, Yazhuo Zhang
    Journal of Translational Medicine.2019;[Epub]     CrossRef
  • Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients
    Tingting Cheng, Ya Wang, Miaolong Lu, Xiaohan Zhan, Tian Zhou, Biao Li, Xianquan Zhan
    Frontiers in Endocrinology.2019;[Epub]     CrossRef
  • circOMA1-Mediated miR-145-5p Suppresses Tumor Growth of Nonfunctioning Pituitary Adenomas by Targeting TPT1
    Qiu Du, Bin Hu, Yajuan Feng, Zongming Wang, Xin Wang, Dimin Zhu, Yonghong Zhu, Xiaobing Jiang, Haijun Wang
    The Journal of Clinical Endocrinology & Metabolism.2019; 104(6): 2419.     CrossRef
  • Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors
    Sérgio Portovedo, Nadja Gaido, Bruno de Almeida Nunes, Ana Giselia Nascimento, Allysson Rocha, Marcelo Magalhães, Gilvan Cortes Nascimento, Denise Pires de Carvalho, Paula Soares, Christina Takiya, Manuel dos Santos Faria, Leandro Miranda-Alves
    Molecular and Cellular Endocrinology.2019; 490: 80.     CrossRef
  • Double Pituitary Adenomas with Synchronous Somatotroph and Corticotroph Clinical Presentation of Acromegaly and Cushing's Disease
    Naomi Collazo-Gutiérrez, Orlando de Jesús, Maria Villamil-Jarauta, Milliette Alvarado, Loida González, Margarita Ramírez, Victor J. Carlo-Chevere
    World Neurosurgery.2019; 132: 161.     CrossRef
  • Association of ApoE haplotype with clinical evidence of pituitary adenoma
    Agne Sidaraite, Alvita Vilkeviciute, Brigita Glebauskiene, Loresa Kriauciuniene, Dalia Zaliuniene, Rasa Liutkeviciene
    Gene.2019; 706: 154.     CrossRef
  • Next-generation sequencing of microRNAs reveals a unique expression pattern in different types of pituitary adenomas
    Zongze He, Longyi Chen, Xiao Hu, Jian Tang, Linfu He, Junting Hu, Fan Fei, Qi Wang
    Endocrine Journal.2019; 66(8): 709.     CrossRef
  • Growth hormone and prolactin-staining tumors causing acromegaly: a retrospective review of clinical presentations and surgical outcomes
    Jonathan Rick, Arman Jahangiri, Patrick M. Flanigan, Ankush Chandra, Sandeep Kunwar, Lewis Blevins, Manish K. Aghi
    Journal of Neurosurgery.2019; 131(1): 147.     CrossRef
  • Study of major genetic factors involved in pituitary tumorigenesis and their impact on clinical and biological characteristics of sporadic somatotropinomas and non-functioning pituitary adenomas
    R.K. Foltran, P.V.G.H. Amorim, F.H. Duarte, I.P.P. Grande, A.C.T.B. Freire, F.P. Frassetto, J.B. Dettoni, V.A. Alves, I. Castro, E.B. Trarbach, M.D. Bronstein, R.S. Jallad
    Brazilian Journal of Medical and Biological Research.2018;[Epub]     CrossRef
  • Detection of circulating tumor cells in patients with pituitary tumors
    Gao Hua, He Yanjiao, Liu Qian, Wang Jichao, Zhang Yazhuo
    BMC Cancer.2018;[Epub]     CrossRef
  • Plurihormonal ACTH-GH Pituitary Adenoma: Case Report and Systematic Literature Review
    Elena Roca, Pier Paolo Mattogno, Teresa Porcelli, Luigi Poliani, Francesco Belotti, Alberto Schreiber, Filippo Maffezzoni, Marco Maria Fontanella, Francesco Doglietto
    World Neurosurgery.2018; 114: e158.     CrossRef
  • The role of galectin-3 in the tumorigenesis and progression of pituitary tumors
    Bo Diao, Ying Liu, Guo‑Zheng Xu, Yi Zhang, Jun Xie, Jie Gong
    Oncology Letters.2018;[Epub]     CrossRef
  • Programmed cell senescence: role of IL-6 in the pituitary
    Melanie Sapochnik, Mariana Fuertes, Eduardo Arzt
    Journal of Molecular Endocrinology.2017; 58(4): R241.     CrossRef
  • Selective molecular biomarkers to predict biologic behavior in pituitary tumors
    Aydin Sav, Fabio Rotondo, Luis V. Syro, Meric A. Altinoz, Kalman Kovacs
    Expert Review of Endocrinology & Metabolism.2017; 12(3): 177.     CrossRef
  • MicroRNA-200b inhibits pituitary tumor cell proliferation and invasion by targeting PKCα
    Yuanchuan Wang, Xiaohong Yin, Long Zhao, Shun Li, Jie Duan, Renzhao Kuang, Junwei Duan
    Experimental and Therapeutic Medicine.2017; 14(2): 1706.     CrossRef
  • Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology
    Filip Garbicz, Dawid Mehlich, Beata Rak, Emir Sajjad, Maria Maksymowicz, Wiktor Paskal, Grzegorz Zieliński, Paweł K. Włodarski
    Pituitary.2017; 20(4): 450.     CrossRef
  • Bromocriptine Induces Autophagy-Dependent Cell Death in Pituitary Adenomas
    Xin Geng, Lixin Ma, Zefu Li, Zhenzhu Li, Jianmin Li, Meng Li, Qingbo Wang, Zheng Chen, Qikai Sun
    World Neurosurgery.2017; 100: 407.     CrossRef
  • Biomarkers of pituitary carcinomas
    Aydin Sav, Fabio Rotondo, Luis V. Syro, Antonio Di Ieva, Michael D. Cusimano, Kalman Kovacs
    Expert Review of Endocrinology & Metabolism.2016; 11(3): 253.     CrossRef
  • MicroRNAs in the pituitary
    Erica Gentilin, Ettore degli Uberti, Maria Chiara Zatelli
    Best Practice & Research Clinical Endocrinology & Metabolism.2016; 30(5): 629.     CrossRef
  • Molecular markers in pituitary tumors
    Asha M. Robertson, Anthony P. Heaney
    Current Opinion in Endocrinology, Diabetes & Obesity.2016; 23(4): 324.     CrossRef
  • MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN
    Kai Zhou, Tingrong Zhang, YanDong Fan, Serick, Guojia Du, Pengfei Wu, Dangmurenjiafu Geng
    Tumor Biology.2016; 37(10): 13469.     CrossRef
  • Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature
    JIUJUN PU, ZHIMING WANG, HUI ZHOU, AILING ZHONG, KAI JIN, LUNLIANG RUAN, GANG YANG
    Oncology Letters.2016; 12(1): 585.     CrossRef
  • Progress in Endocrine Neoplasia
    Samuel A. Wells
    Clinical Cancer Research.2016; 22(20): 4981.     CrossRef
  • Pituitary adenomas: historical perspective, surgical management and future directions
    Debebe Theodros, Mira Patel, Jacob Ruzevick, Michael Lim, Chetan Bettegowda
    CNS Oncology.2015; 4(6): 411.     CrossRef
  • Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells
    Mark O. Kitchen, Kiren Yacqub-Usman, Richard D. Emes, Alan Richardson, Richard N. Clayton, William E. Farrell
    Pituitary.2015; 18(5): 674.     CrossRef
  • Pituitary Adenoma and the Chemokine Network: A Systemic View
    Fabio Grizzi, Elena Monica Borroni, Alessandro Vacchini, Dorina Qehajaj, Manuela Liguori, Sanja Stifter, Maurizio Chiriva-Internati, Antonio Di Ieva
    Frontiers in Endocrinology.2015;[Epub]     CrossRef
  • MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5
    Wang Renjie, Liang Haiqian
    Cancer Letters.2015; 356(2): 568.     CrossRef
  • Brief Review of Articles in 'Endocrinology and Metabolism' in 2013
    Won-Young Lee
    Endocrinology and Metabolism.2014; 29(3): 251.     CrossRef
  • Epigenetics of pituitary tumours
    William E. Farrell
    Current Opinion in Endocrinology, Diabetes & Obesity.2014; 21(4): 299.     CrossRef
  • The Role of Genetic and Epigenetic Changes in Pituitary Tumorigenesis
    Hidenori FUKUOKA, Yutaka TAKAHASHI
    Neurologia medico-chirurgica.2014; 54(12): 943.     CrossRef
Close layer

Endocrinol Metab : Endocrinology and Metabolism