1. Krieger TG, Moran CM, Frangini A, Visser WE, Schoenmakers E, Muntoni F, et al. Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development. Proc Natl Acad Sci U S A 2019;116:22754-63.
[CROSSREF] [PUBMED] [PMC]
2. Moran C, Schoenmakers N, Agostini M, Schoenmakers E, Offiah A, Kydd A, et al. An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor α. J Clin Endocrinol Metab 2013;98:4254-61.
[CROSSREF] [PUBMED]
3. Fauquier T, Romero E, Picou F, Chatonnet F, Nguyen XN, Quignodon L, et al. Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol 2011;356:350-8.
[CROSSREF] [PUBMED]
4. Han CR, Wang H, Hoffmann V, Zerfas P, Kruhlak M, Cheng SY. Thyroid hormone receptor α mutations cause heart defects in zebrafish. Thyroid 2021;31:315-26.
[CROSSREF] [PUBMED] [PMC]
5. Ferdous A, Wang ZV, Luo Y, Li DL, Luo X, Schiattarella GG, et al. FoxO1-Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nat Commun 2020;11:2551.
[CROSSREF] [PUBMED] [PMC]
6. Franca MM, German A, Fernandes GW, Liao XH, Bianco AC, Refetoff S, et al. Human type 1 iodothyronine deiodinase (DIO1) mutations cause abnormal thyroid hormone metabolism. Thyroid 2021;31:202-7.
[CROSSREF] [PUBMED] [PMC]
7. Kus A, Chaker L, Teumer A, Peeters RP, Medici M. The genetic basis of thyroid function: novel findings and new approaches. J Clin Endocrinol Metab 2020;105:dgz225.
[PUBMED]
8. Praestholm SM, Siersbaek MS, Nielsen R, Zhu X, Hollenberg AN, Cheng SY, et al. Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet 2020;16:e1008770.
[CROSSREF] [PUBMED] [PMC]
9. Coscia F, Taler-Vercic A, Chang VT, Sinn L, O’Reilly FJ, Izore T, et al. The structure of human thyroglobulin. Nature 2020;578:627-30.
[CROSSREF] [PUBMED] [PMC]
10. Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? Nutrients 2020;12:1769.
[CROSSREF] [PUBMED] [PMC]
11. Fenneman AC, Rampanelli E, Yin YS, Ames J, Blaser MJ, Fliers E, et al. Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochem Soc Trans 2020;48:915-31.
[CROSSREF] [PUBMED]
12. Yoo WS, Chung HK. Recent advances in autoimmune thyroid diseases. Endocrinol Metab (Seoul) 2016;31:379-85.
[CROSSREF] [PUBMED] [PMC]
13. Li Q, Wang B, Mu K, Zhang JA. The pathogenesis of thyroid autoimmune diseases: new T lymphocytes. Cytokines circuits beyond the Th1-Th2 paradigm. J Cell Physiol 2019;234:2204-16.
[CROSSREF] [PUBMED]
14. Su X, Yin X, Liu Y, Yan X, Zhang S, Wang X, et al. Gut dysbiosis contributes to the imbalance of treg and th17 cells in Graves’ disease patients by propionic acid. J Clin Endocrinol Metab 2020;105:dgaa511.
[CROSSREF] [PUBMED]
16. Sun J, Zhao F, Lin B, Feng J, Wu X, Liu Y, et al. Gut microbiota participates in antithyroid drug induced liver injury through the lipopolysaccharide related signaling pathway. Front Pharmacol 2020;11:598170.
[CROSSREF] [PUBMED] [PMC]
17. Lee DH. Evidence of the possible harm of endocrine-disrupting chemicals in humans: ongoing debates and key issues. Endocrinol Metab (Seoul) 2018;33:44-52.
[CROSSREF] [PUBMED] [PMC]
18. Ramhoj L, Hass U, Gilbert ME, Wood C, Svingen T, Usai D, et al. Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep 2020;10:2672.
[CROSSREF] [PUBMED] [PMC]
19. Ramhoj L, Hass U, Boberg J, Scholze M, Christiansen S, Nielsen F, et al. Perfluorohexane sulfonate (PFHxS) and a mixture of endocrine disrupters reduce thyroxine levels and cause antiandrogenic effects in rats. Toxicol Sci 2018;163:579-91.
[CROSSREF] [PUBMED]
20. Gilbert ME, O’Shaughnessy KL, Axelstad M. Regulation of thyroid-disrupting chemicals to protect the developing brain. Endocrinology 2020 161:bqaa106.
[CROSSREF] [PUBMED]
21. Kim J, Lee G, Lee YM, Zoh KD, Choi K. Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. Chemosphere 2021;262:128012.
[CROSSREF] [PUBMED]
22. Chu S, Kwon BR, Lee YM, Zoh KD, Choi K. Effects of 2-ethylhexyl-4-methoxycinnamate (EHMC) on thyroid hormones and genes associated with thyroid, neurotoxic, and nephrotoxic responses in adult and larval zebrafish (Danio rerio). Chemosphere 2021;263:128176.
[CROSSREF] [PUBMED]
23. Pozdeyev N, Rose MM, Bowles DW, Schweppe RE. Molecular therapeutics for anaplastic thyroid cancer. Semin Cancer Biol 2020;61:23-9.
[CROSSREF] [PUBMED] [PMC]
24. Oh JM, Baek SH, Gangadaran P, Hong CM, Rajendran RL, Lee HW, et al. A novel tyrosine kinase inhibitor can augment radioactive iodine uptake through endogenous sodium/iodide symporter expression in anaplastic thyroid cancer. Thyroid 2020;30:501-18.
[CROSSREF] [PUBMED]
25. Iniguez-Ariza NM, Bible KC, Clarke BL. Bone metastases in thyroid cancer. J Bone Oncol 2020;21:100282.
[CROSSREF] [PUBMED] [PMC]
26. Shin HS, Sun HJ, Whang YM, Park YJ, Park DJ, Cho SW. Metformin reduces thyroid cancer tumor growth in the metastatic niche of bone by inhibiting osteoblastic RANKL productions. Thyroid 2020 Sep 15 [Epub].
https://doi.org/10.1089/thy.2019.0851
.
[CROSSREF]
27. Ahn J, Jin M, Song E, Ryu YM, Song DE, Kim SY, et al. Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry. Thyroid 2021;31:61-7.
[CROSSREF] [PUBMED]
28. Pozdeyev N, Erickson TA, Zhang L, Ellison K, Rivard CJ, Sams S, et al. Comprehensive immune profiling of medullary thyroid cancer. Thyroid 2020;30:1263-79.
[CROSSREF] [PUBMED] [PMC]