1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127(5 Suppl):990S-1S.
[CROSSREF] [PUBMED]
2. Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, et al. Sarcopenia and muscle aging: a brief overview. Endocrinol Metab (Seoul) 2020;35:716-32.
[CROSSREF] [PUBMED] [PMC] [PDF]
3. Morley JE. Anorexia, sarcopenia, and aging. Nutrition 2001;17:660-3.
[CROSSREF] [PUBMED]
4. Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One 2017;12:e0169548.
[CROSSREF] [PUBMED] [PMC]
5. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:16-31.
[CROSSREF] [PUBMED] [PMC] [PDF]
6. Yoo JI, Lee KH, Choi Y, Lee J, Park YG. Poor dietary protein intake in elderly population with sarcopenia and osteosarcopenia: a nationwide population-based study. J Bone Metab 2020;27:301-10.
[CROSSREF] [PUBMED] [PMC] [PDF]
8. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 2000;17:1-45.
9. Ahn SH, Park SM, Park SY, Yoo JI, Jung HS, Nho JH, et al. Osteoporosis and osteoporotic fracture fact sheet in Korea. J Bone Metab 2020;27:281-90.
[CROSSREF] [PUBMED] [PMC] [PDF]
10. Kirk B, Zanker J, Duque G. Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle 2020;11:609-18.
[CROSSREF] [PUBMED] [PMC] [PDF]
11. Tarantino U, Baldi J, Celi M, Rao C, Liuni FM, Iundusi R, et al. Osteoporosis and sarcopenia: the connections. Aging Clin Exp Res 2013;25 Suppl 1:S93-5.
[CROSSREF] [PUBMED] [PDF]
12. Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, et al. The role of osteokines in sarcopenia: therapeutic directions and application prospects. Front Cell Dev Biol 2021;9:735374.
[CROSSREF] [PUBMED] [PMC]
13. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013;19:179-92.
[CROSSREF] [PUBMED] [PDF]
14. Clarke BL, Drake MT. Clinical utility of serum sclerostin measurements. Bonekey Rep 2013;2:361.
[CROSSREF] [PUBMED] [PMC]
15. Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 2011;26:373-9.
[CROSSREF] [PUBMED] [PMC]
16. Wang JS, Mazur CM, Wein MN. Sclerostin and osteocalcin: candidate bone-produced hormones. Front Endocrinol (Lausanne) 2021;12:584147.
[CROSSREF] [PUBMED] [PMC]
17. Oh JH, Song S, Rhee H, Lee SH, Kim DY, Choe JC, et al. Normal reference plots for the bioelectrical impedance vector in healthy Korean adults. J Korean Med Sci 2019;34:e198.
[CROSSREF] [PUBMED] [PMC] [PDF]
18. Jang IY, Jung HW, Lee CK, Yu SS, Lee YS, Lee E. Comparisons of predictive values of sarcopenia with different muscle mass indices in Korean rural older adults: a longitudinal analysis of the Aging Study of PyeongChang Rural Area. Clin Interv Aging 2018;13:91-9.
[CROSSREF] [PUBMED] [PMC] [PDF]
19. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994;49:M85-94.
[CROSSREF] [PUBMED]
20. Jung HW, Roh H, Cho Y, Jeong J, Shin YS, Lim JY, et al. Validation of a multi-sensor-based kiosk for Short Physical Performance Battery. J Am Geriatr Soc 2019;67:2605-9.
[CROSSREF] [PUBMED] [PDF]
21. Jung HW, Roh HC, Kim SW, Kim S, Kim M, Won CW. Cross-comparisons of gait speeds by automatic sensors and a stopwatch to provide converting formula between measuring modalities. Ann Geriatr Med Res 2019;23:71-6.
[CROSSREF] [PUBMED] [PMC]
22. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 2020;21:300-7.
[CROSSREF] [PUBMED]
23. Jang IY, Lee E, Lee H, Park H, Kim S, Kim KI, et al. Characteristics of sarcopenia by European consensuses and a phenotype score. J Cachexia Sarcopenia Muscle 2020;11:497-504.
[CROSSREF] [PUBMED] [PMC] [PDF]
24. Daly RM, Rosengren BE, Alwis G, Ahlborg HG, Sernbo I, Karlsson MK. Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: a-10 year prospective population-based study. BMC Geriatr 2013;13:71.
[CROSSREF] [PUBMED] [PMC] [PDF]
25. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985) 2000;89:81-8.
[CROSSREF] [PUBMED]
27. Sepulveda-Loyola W, Phu S, Bani Hassan E, Brennan-Olsen SL, Zanker J, Vogrin S, et al. The joint occurrence of osteoporosis and sarcopenia (osteosarcopenia): definitions and characteristics. J Am Med Dir Assoc 2020;21:220-5.
[CROSSREF] [PUBMED]
28. Greco EA, Pietschmann P, Migliaccio S. Osteoporosis and sarcopenia increase frailty syndrome in the elderly. Front Endocrinol (Lausanne) 2019;10:255.
[CROSSREF] [PUBMED] [PMC]
29. Yoo JI, Kim H, Ha YC, Kwon HB, Koo KH. Osteosarcopenia in patients with hip fracture is related with high mortality. J Korean Med Sci 2018;33:e27.
[CROSSREF] [PUBMED] [PMC] [PDF]
30. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 2020;18:388-400.
[CROSSREF] [PUBMED] [PDF]
31. Avin KG, Bloomfield SA, Gross TS, Warden SJ. Biomechanical aspects of the muscle-bone interaction. Curr Osteoporos Rep 2015;13:1-8.
[CROSSREF] [PUBMED] [PMC] [PDF]
32. Brotto M, Bonewald L. Bone and muscle: interactions beyond mechanical. Bone 2015;80:109-14.
[CROSSREF] [PUBMED] [PMC]
33. Karczewska-Kupczewska M, Stefanowicz M, Matulewicz N, Nikolajuk A, Straczkowski M. Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity. J Clin Endocrinol Metab 2016;101:3079-87.
[CROSSREF] [PUBMED]
34. Wood CL, Pajevic PD, Gooi JH. Osteocyte secreted factors inhibit skeletal muscle differentiation. Bone Rep 2017;6:74-80.
[CROSSREF] [PUBMED] [PMC]
35. Phillips EG, Beggs LA, Ye F, Conover CF, Beck DT, Otzel DM, et al. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury. PLoS One 2018;13:e0194440.
[CROSSREF] [PUBMED] [PMC]
36. Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, et al. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR Plus 2017;1:86-100.
[CROSSREF] [PUBMED] [PMC] [PDF]
37. Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R. Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 2013;28:855-64.
[CROSSREF] [PUBMED]
38. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone
in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008;283:5866-75.
[CROSSREF] [PUBMED]
39. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, et al. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 2012;23:1225-34.
[CROSSREF] [PUBMED] [PMC]
40. Lim Y, Kim CH, Lee SY, Kim H, Ahn SH, Lee SH, et al. Decreased plasma levels of sclerostin but not Dickkopf-1 are associated with an increased prevalence of osteoporotic fracture and lower bone mineral density in postmenopausal Korean women. Calcif Tissue Int 2016;99:350-9.
[CROSSREF] [PUBMED] [PDF]
41. Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, et al. The effects of muscle fatigue on bone strain. J Exp Biol 1994;188:217-33.
[CROSSREF] [PUBMED] [PDF]
42. Kim JA, Roh E, Hong SH, Lee YB, Kim NH, Yoo HJ, et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone 2019;128:115053.
[CROSSREF] [PUBMED]
43. Magaro MS, Bertacchini J, Florio F, Zavatti M, Poti F, Cavani F, et al. Identification of sclerostin as a putative new myokine involved in the muscle-to-bone crosstalk. Biomedicines 2021;9:71.
[CROSSREF] [PUBMED] [PMC]
44. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 2016;375:1532-43.
[CROSSREF] [PUBMED]
45. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 2017;377:1417-27.
[CROSSREF] [PUBMED]
46. Mockel L, Bartneck M, Mockel C. Risk of falls in postmenopausal women treated with romosozumab: preliminary indices from a meta-analysis of randomized, controlled trials. Osteoporos Sarcopenia 2020;6:20-6.
[CROSSREF] [PUBMED] [PMC]